Skip to main content
Log in

Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The research focused on enhancing the mechanical properties and thermal stability of bio-composites with natural flours and improving the interfacial adhesion between biodegradable polymer and flour. The tensile and flexural strength of the PLA bio-composites decreased with increasing flour addition. However, a 3% loading of the compatibilizer in the PLA bio-composite increased this strength up to that observed with the 10% loading flour. The degradation temperature of PLA was decreased by the flour but destarched cassava flour had higher thermal stability on account of its higher lignin content than pineapple flour. This means that the PLA bio-composites with destarched cassava flour had higher thermal stability than those with the pineapple flour. In addition, the thermal degradation temperature was increased by adding MAPLA. The compatibilizer improved the crystallinity of PLA, which enhanced the mechanical strength of the PLA bio-composites. As the pineapple flour and destarched cassava flour 30% loading was increased, the HDT of the PLA bio-composites increased from 56.8 °C to ~66.3 and 69.7 °C, respectively. The thermal aging test showed no reduction in strength of the neat PLA. However, the PLA bio-composites showed a gradual decrease in tensile strength with increasing number of cycles. Moreover, the shrinkage ratio of the neat PLA was 5% of that found with the PLA resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ. 2002;10:19–26.

    Article  CAS  Google Scholar 

  2. Huda MS, Drzal LT, Misra M, Mohanty AK. Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci. 2006;102:4856–69.

    Article  CAS  Google Scholar 

  3. Czarnecki L, White JL. Shear-flow rheological properties, fiber damage, and mastication characteristics of aramid-fiber-reinforced, glass-fiber-reinforced and cellulose-fiber-reinforced polystyene melts. J Appl Polym Sci. 1980;25:1217–44.

    Article  CAS  Google Scholar 

  4. Huda MS, Drzal LT, Mohanty AK, Misra M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol. 2006;66:1813–24.

    Article  CAS  Google Scholar 

  5. Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M. “Green” composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci. 2005;40:4221–9.

    Article  CAS  Google Scholar 

  6. Chow W, Lok S. Thermal properties of poly (lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.

    Article  CAS  Google Scholar 

  7. Plackett D. Maleated polylactide as an interfacial compatibilizer in biocomposites. J Polym Environ. 2004;12:131–8.

    Article  CAS  Google Scholar 

  8. Sanadi AR, Young RA, Clemons C, Rowell RM. Recycled newspaper fibers as reinforcing fillers in thermoplastics. 1. Analysis of tensile and impact properties in polypropylene. J Reinf Plast Compos. 1994;13:54–67.

    Article  CAS  Google Scholar 

  9. Hujuri U, Chattopadhay SK, Uppaluri R, Ghoshal AK. Effect of maleic anhydride grafted polypropylene on the mechanical and morphological properties of chemically modified short-pineapple-leaf-fiber-reinforced polypropylene composites. J Appl Polym Sci. 2008;107:1507–16.

    Article  CAS  Google Scholar 

  10. Kim HS, Yang HS, Kim HJ, Lee BJ, Hwang TS. Thermal properties of agro-flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim. 2005;81:299–306.

    Article  CAS  Google Scholar 

  11. Yang H, Gardner D, Kim H. Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim. 2009;98:553–8.

    Article  CAS  Google Scholar 

  12. Gao M, Sun CY, Zhu K. Thermal degradation of wood treated with guanidine compounds in air—flammability study. J Therm Anal Calorim. 2004;75:221–32.

    Article  CAS  Google Scholar 

  13. Joseph PV, Joseph K, Thomas S, et al. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites A. 2003;34:253–66.

    Article  Google Scholar 

  14. Alvarez VA, Vazquez A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab. 2004;84:13–21.

    Article  CAS  Google Scholar 

  15. da Roz AL, Curvelo AAS. Thermal characterization of benzylcellulose derivatives prepared from bleached pinus kraft pulp. J Therm Anal Calorim. 2004;75:429–36.

    Article  CAS  Google Scholar 

  16. Trindade WG, Hoareau W, Razera IAT, et al. Phenolic thermoset matrix reinforced with sugar cane bagasse fibers: attempt to develop a new fiber surface chemical modification involving formation of quinones followed by reaction with furfuryl alcohol. Macromol Mater Eng. 2004;289:728–36.

    Article  CAS  Google Scholar 

  17. Ray D, Sarkar BK, Basak RK, Rana AK. Thermal behavior of vinyl ester resin matrix composites reinforced with alkali-treated jute fibers. J Appl Polym Sci. 2004;94:123–9.

    Article  CAS  Google Scholar 

  18. Iovino R, Zujjo R, Rao MA, Cassar L, Gianfreda L. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab. 2008;93:147–57.

    Article  CAS  Google Scholar 

  19. Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct. 2007;77:45–55.

    Article  Google Scholar 

  20. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites A. 2007;38:1473–82.

    Article  Google Scholar 

  21. Yang HS, Wolcott MP, Kim HS, Kim S, Kim HJ. Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos Struct. 2007;79:369–75.

    Article  Google Scholar 

  22. Perrin FX, Merlatti C, Aragon E, Margaillan A. Degradation study of polymer coating: improvement in coating weatherability testing and coating failure prediction. Prog Org Coat. 2009;64:466–73.

    Article  CAS  Google Scholar 

  23. Favaro M, Mendichi R, Ossola F, et al. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part I: photo-oxidative weathering. Polym Degrad Stab. 2006;91:3083–96.

    Article  CAS  Google Scholar 

  24. Zou P, Xiong H, Tang S. Natural weathering of rape straw flour (RSF)/HDPE and nano-SiO2/RSF/HDPE composites. Carbohydr Polym. 2008;73:378–83.

    Article  CAS  Google Scholar 

  25. Duek EAR, Zavaglia CAC, Belangero WD. In vitro study of poly(lactic acid) pin degradation. Polymer. 1999;40:6465–73.

    Article  CAS  Google Scholar 

  26. Weir NA, Buchanan FJ, Orr JF, Farrar DF, Boyd A. Processing, annealing and sterilisation of poly-l-lactide. Biomaterials. 2004;25:3939–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project work was initiated through research grants (2006-A046-03) supported by the Korea National Cleaner Production Center (KNCPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KW., Lee, BH., Kim, HJ. et al. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108, 1131–1139 (2012). https://doi.org/10.1007/s10973-011-1350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1350-y

Keywords

Navigation