Skip to main content
Log in

Thermochemistry of triboactivated natural and NH4-exchanged clinoptilolite mixed with Tunisian apatite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mechanical tribo- and thermo-chemical methods applied for remodeling phosphate raw materials manifest a number of advantages over the conventional technologies. They are related to the reduction of soil contamination and minimization of the released gas emissions in the environment and generate solid wastes. In this work, natural and NH4-exchanged clinoptilolite are used for increasing the transition of P2O5 into assimilated by plants form during tribochemical activation (TCA). Better nutrients assimilation as well as green production could be achieved by applying such a treatment based on the ion-exchange reactions taking place in the soil. The occurring upon TCA structural changes and phase transformations of the used Tunisian phosphorite, natural and NH4-exchanged clinoptilolite as well as their mixtures are investigated by means of X-ray powder diffraction, IR spectroscopy, and thermal analysis. The thermal method gives evidence for solid phase reactions and increased reactivity as a result of the tribochemical treatment. This treatment leads also to minimization of the size of crystallites, amorfization of the samples, and increasing amount of hydroxyl and carbonate ions in the apatite structure. Treated samples are highly soluble. In addition, conditions for almost complete solubility of P2O5 were found. This study shows that some of the produced compositions are suitable for fertilizers or soil conditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ap (Ca5(PO4)3F):

Tunisian apatite

Nat-Cpt:

Natural clinoptiolite

NH4-Cpt:

NH4-exchanged clinoptiolite

TCA:

Tribochemical activation

TCM:

Tribochemical mixing

C-F-Ap (Ca10(PO4)5CO3):

Carbonate fluorine apatite

C-OH-F-Ap (Ca10(PO4)5CO3(OH)F):

Carbonate hydroxyl fluorine apatite.

References

  1. Chaikina MV. Chapter 1: Isomorphous modifications of apatite as the subject of investigations of mechanochemical processes. Chapter 5: Physicochemical transformations and properties of mechanically activated isomorphous modifications of apatite. Chapter 6: Physicochemical transformations of the minerals of phosphate ores under mechanical activations. In: Avvakumov EG, editor. Mechanochemistry of natural and synthetic apatites. Novosibirsk: Publishing house of SB RAS, Branch “GEO”; 2002. p. 11–15, 105–107, 114–115, 139.

  2. Wieczorek-Ciurowa Kr, Gamrat K. Mechanochemical syntheses as an example of green processes. J Therm Anal Calorim. 2007;88:213–7.

    Article  CAS  Google Scholar 

  3. Allen ER, Ming DW. Recent progress in the use of natural zeolites in agronom and horticulture. In: Ming DW, Mumpton FA, editors. Natural Zeolites’93: Occurrence, Properties, Use. International Committee on Natural Zeolites, New York: Brockport; 1993. p. 477–490.

  4. Yusupov TS, Shumskaya LG, Kirillova EA, Boldyrev VV. Reactivity of mechanically activated apatite and its interaction with zeolites. J Min Sci. 2006;42(2):189–94.

    Article  Google Scholar 

  5. Yusupov TS, Shumskaya LG. Control of cation-exchange interaction between zeolites and phosphates on the basis of soft mechanochemical activation. J Min Sci. 2002;38(2):177–81.

    Article  Google Scholar 

  6. Toneva A, Petrova N, Bakardjieva S. Tribochemical reactions between natural phosphates and zeolites. In: Proc. Kontact’97, Sofia; 1997. p. 45–55.

  7. Tomazovic Br, Ceranic T, Sijaric G. The properties of NH4-Clinoptilolite. Part 1. Zeolites. 1996;16:301–8.

    Article  CAS  Google Scholar 

  8. Petrova N, Filizova L, Kirov G. Callorimetric study of ion-exchange on clinoptilolite and mordenite at different temperatures. In: Kirov G, Filizova L, Petrov O, editors. Natural zeolites—Sofia’95. Sofia, Moscow: Pensoft Publisehrs; 1997. p. 173–81.

    Google Scholar 

  9. Petkova V, Kalvachev Yu, Yaneva V. Phase transformations of mechanically activated nano-sized tunisian natural apatite. In: Balabanova E, Dragieva I, editors. Proceedings of X Workshop “Nanoscience & Nanotechnology”, 27–28 Nov 2008, ISSN 1313-8995, Sofia: Heron Press; 2009. p. 239–243.

  10. Veiderma M, Knubovets R, Tonsuaadu K. Fluorhyroxyapatites of Northen Europe and their thermal transformations, Phosphorus. Sulphur Silicon. 1996;109–110:43–7.

    Article  Google Scholar 

  11. Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E. Infrared and Raman microspectrometry study of fluor-fluor-hydroxyl and hydroxyl-apatite powders. J Mater Sci: Mater Med. 1997;8:271–6.

    Article  CAS  Google Scholar 

  12. Lai T-M, Elerl D. Controlled and renewable release of phosphorous in soils from mixtures of phosphorous in soils from mixtures of phosphate rock and NH4-exchanged clinoptilolite. Zeolites. 1986;6:129–32.

    Article  CAS  Google Scholar 

  13. Yörükoğulları E, Yılmaz G, Dikmen S. Thermal treatment of zeolitic tuff. J Therm Anal Calorim. 2010;100:925–8.

    Article  Google Scholar 

  14. Erdoğan BA, Sakizci M, Yörükoğullari E. Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study. Therm Anal Calorim. 2010;100:19–26.

    Article  Google Scholar 

  15. Tomazovic Br, Ceranic T, Sijaric G. The properties of NH4-clinoptilolite. Part 2. Zeolites. 1996;16:309–12.

    Article  CAS  Google Scholar 

  16. Ilieva A, Mhailova B, Tsintsov Z, Petrov O. Structural state of microcrystalline opals: a Raman spectroscopic study. Am Mineral. 2007;92(8–9):1325–33.

    Article  CAS  Google Scholar 

  17. Tonsuaadu K, Peld M, Leskela T, Mannonen R, Niinisto L, Veiderma M. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 1995;256:55–65.

    Article  CAS  Google Scholar 

  18. Lafon JP, Champion E, Bernache-Assollant D, Gibert R, Danna AM. Thermal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;72:1127–34.

    Article  CAS  Google Scholar 

  19. Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL. Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem. 2001;160:340–9.

    Article  CAS  Google Scholar 

  20. Petkova V, Yaneva V. Thermal behavior and phase transformations of nanosized apatite (Syria). J Therm Anal Calorim. 2010;99(1):179–89.

    Article  CAS  Google Scholar 

  21. Petkova V, Yaneva V. Thermal investigations on phase transformations of Syrian phosphorite: Part I. J Therm Anal Calorim. 2010;100(1):51–6.

    Article  CAS  Google Scholar 

  22. Senamaud N, Bernach-Assollant D, Champion E, Heughebaert M, Rey C. Calcination and sintering of hydroxyfluorapatite powders. Solid State Ionics. 1997;101–103:1357–62.

    Article  Google Scholar 

  23. Shumskaya LG, Kirillova EA, Yusupov TS. Controlled changes in technological properties of phosphates in mechanical activation with zeolites. J Min Sci. 1999;35(1):96–100.

    Article  Google Scholar 

  24. Petkova V, Yaneva V, Pelovski Y. Phase transformation of mechanically activated nano-sized Tunisian carbonate substituted Apatite. Part I. J Balkan Tribol Assoc. 2009;15(4):480–92.

    CAS  Google Scholar 

  25. Petkova V, Kalvachev Yu, Petrov O. Investigation of structural and spectroscopic properties of nano-sized natural apatites. In: Rositsa Petrova Nikolova, Petrov O, Kovacheva D, Kostov-Kytin V, Shivachev B, Tzvetanova Ya, editors. Ist National Crystallographic Symposium, ISSN 1313-9991, Sofia; 2009. p. 74–77. http://www.clmc.bas.bg/symp09/docs/First_Cryst_Symp.pdf.

  26. Yaneva V, Petrov O, Petkova V. Structural and spectroscopic studies of the nanosize appatite (Syrian). Mater Res Bull. 2009;44:693–9.

    Article  CAS  Google Scholar 

  27. Fleet ME. Infrared spectra of carbonate apatites: ν 2-region bands. Biomaterials. 2009;30:1473–81.

    Article  CAS  Google Scholar 

  28. Fleet ME, Liu X. Carbonate apatite type A synthesized at high pressure: new space group (P3) and orientation of channel carbonate ion. J Solid State Chem. 2003;174:412–7.

    Article  CAS  Google Scholar 

  29. Fleet ME, Liu X, King PL. Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Mineral. 2004;89:1422–32.

    CAS  Google Scholar 

  30. Fleet ME, Liu X. Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. Am Mineral. 2008;93:1460–9.

    Article  CAS  Google Scholar 

  31. Chaikina MV, Kryukova GN. Structural transformations in quartz and apatite on mechanical activation. J Struct Chem. 2004;45:S121–6.

    Article  CAS  Google Scholar 

  32. Lafon JP, Championa E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc. 2008;28:139–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Fund ‘‘Scientific research’’ of the Ministry of Education for the financial support (project DO O2-104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Petkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkova, V., Serafimova, E., Petrova, N. et al. Thermochemistry of triboactivated natural and NH4-exchanged clinoptilolite mixed with Tunisian apatite. J Therm Anal Calorim 105, 535–544 (2011). https://doi.org/10.1007/s10973-010-1224-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1224-8

Keywords

Navigation