Skip to main content
Log in

Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two metal-organic frameworks, Ca(2,6-NDC)(DMF) (1) and Mn3(2,6-NDC)3(DMF)4 (2) (where 2,6-NDC = 2,6-naphthalene dicarboxylate and DMF = N,N′-dimethylformamide) have been solvothermally synthesized under optimized conditions and characterized by X-ray powder diffraction, elemental analysis, FT-IR spectroscopy, and TG analysis. The thermal decomposition characteristics were investigated under air atmosphere from 300 to 1,170 K (for 1) and from 300 to 971 K (for 2). The molar heat capacities were measured from 198 to 548 K (for 1) and from 198 to 448 K (for 2) by temperature modulated differential scanning calorimetry (TMDSC) for the first time. The fundamental thermodynamic parameters such as entropy and enthalpy variations with temperature were calculated based on the experimentally determined molar heat capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Botas JA, Calleja G, Sanchez-Sanchez M, Orcajo MG. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir. 2010;26:5300–3.

    Article  CAS  Google Scholar 

  2. Saha D, Bao ZB, Jia F, Deng SG. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ Sci Technol. 2010;44:1820–6.

    Article  CAS  Google Scholar 

  3. Wang CY, Tsao CS, Yu MS, Liao PY, Chung TY, Wu HC, Miller MA, Tzeng YR. Hydrogen storage measurement, synthesis and characterization of metal-organic frameworks via bridged spillover. J Alloy Compd. 2010;492:88–94.

    Article  CAS  Google Scholar 

  4. Wang ZQ, Tanabe KK, Cohen SM. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification. Chem-Eur J. 2010;16:212–7.

    Article  Google Scholar 

  5. Zou XL, Cha MH, Kim S, Nguyen MC, Zhou G, Duan WH, Ihm J. Hydrogen storage in Ca-decorated, B-substituted metal organic framework. Int J Hydrog Energy. 2010;35:198–203.

    Article  CAS  Google Scholar 

  6. Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38:1477–504.

    Article  CAS  Google Scholar 

  7. Liang ZJ, Marshall M, Chaffee AL. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13×). Energ Fuel. 2009;23:2785–9.

    Article  CAS  Google Scholar 

  8. Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C. Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem Eng J. 2009;155:553–66.

    Article  CAS  Google Scholar 

  9. Gu ZY, Jiang DQ, Wang HF, Cui XY, Yan XP. Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks. J Phys Chem C. 2010;114:311–6.

    Article  CAS  Google Scholar 

  10. Xu Q, Liu DH, Yang QY, Zhong CL, Mi JG. Li-modified metal-organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity. J Mater Chem. 2010;20:706–14.

    Article  CAS  Google Scholar 

  11. Song JL, Zhang ZF, Hu SQ, Wu TB, Jiang T, Han BX. MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem. 2009;11:1031–6.

    Article  CAS  Google Scholar 

  12. Vitorino MJ, Devic T, Tromp M, Ferey G, Visseaux M. Lanthanide metal-organic frameworks as ziegler-natta catalysts for the selective polymerization of isoprene. Macromol Chem Phys. 2009;210:1923–32.

    Article  CAS  Google Scholar 

  13. Bhattacharjee S, Choi JS, Yang ST, Choi SB, Kim J, Ahn WS. Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. J Nanosci Nanotechnol. 2010;10:135–41.

    Article  CAS  Google Scholar 

  14. Juan-Alcaniz J, Ramos-Fernandez EV, Lafont U, Gascon J, Kapteijn F. Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J Catal. 2010;269:229–41.

    Article  CAS  Google Scholar 

  15. Kleist W, Maciejewski M, Baiker A. MOF-5 based mixed-linker metal-organic frameworks: synthesis, thermal stability and catalytic application. Thermochim Acta. 2010;499:71–8.

    Article  CAS  Google Scholar 

  16. Wang MS, Guo SP, Li Y, Cai LZ, Zou JP, Xu G, Zhou WW, Zheng FK, Guo GC. A direct white-light-emitting metal-organic framework with tunable yellow-to-white photoluminescence by variation of excitation light. J Am Chem Soc. 2009;131:13572–3.

    Article  CAS  Google Scholar 

  17. Wen LL, Wang D, Wang CG, Wang F, Li DF, Deng KJ. A 3D porous zinc MOF constructed from a flexible tripodal ligand: synthesis, structure, and photoluminescence property. J Solid State Chem. 2009;182:574–9.

    Article  CAS  Google Scholar 

  18. Zhang KL, Pan ZC, Chang Y, Liu WL, Ng SW. Synthesis and characterization of an energetic three-dimensional metal-organic framework with blue photoluminescence. Mater Lett. 2009;63:2136–8.

    Article  CAS  Google Scholar 

  19. Loiseau T, Mellot-Draznieks C, Muguerra H, Ferey G, Haouas M, Taulelle F, Chim CR. Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)center dot H2O. 2005; 8:765–72.

  20. Irena S, Julia F, Stefan K. New polymorphs of magnesium-based metal-organic frameworks Mg3(ndc)3(ndc = 2,6-Naphthalenedicarboxylate). Eur J Inorg Chem. 2007;35:5475–9.

    Google Scholar 

  21. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science. 2002;295:469–72.

    Article  CAS  Google Scholar 

  22. Dinca M, Long JR. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C–C10H6–CO2)3. J Am Chem Soc. 2005;127:9376–7.

    Article  CAS  Google Scholar 

  23. Dailly A, Vajo JJ, Ahn CC. Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. J Phys Chem B. 2006;110:1099–101.

    Article  CAS  Google Scholar 

  24. Jiang CH, Song LF, Jiao CL, Zhang J, Sun LX, Xu F. Exceptional thermal stability and thermodynamic properties of lithium based metal-organic framework. J Therm Anal Calorim. doi:10.1007/s10973-010-0880-z.

  25. Rowsell JLC, Yaghi OM. Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed. 2005;44:4670–9.

    Article  CAS  Google Scholar 

  26. Liu YY, Zhang J, Xu F, Sun LX, Zhang T, You WS, Zhao Y, Zeng JL, Cao Z, Yang DW. Lithium-based 3D coordination polymer with hydrophilic structure for sensing of solvent molecules. Cryst Growth Des. 2008;8:3127–9.

    Google Scholar 

  27. Qiu SJ, Chu HL, Zhang J, Qi YN, Sun LX, Xu F. Heat capacities and thermodynamic properties of CoPc and CoTMPP. J Therm Anal Calorim. 2008;91:841–8.

    Article  CAS  Google Scholar 

  28. Qi YN, Xu F, Ma HJ, Sun LX, Zhang J, Jiang T. Thermal stability and glass transition behavior of PANI/gamma-Al2O3 composites. J Therm Anal Calorim. 2008;91:219–23.

    Article  CAS  Google Scholar 

  29. Song LF, Jiang CH, Jiao CL, Zhang J, Sun LX, Xu F, Jiao QZ, Xing YH, Du Y, Cao Z. Heat capacities and thermodynamic properties of one manganese based MOFs. J Therm Anal Calorim. doi:10.1007/s10973-010-0808-7.

  30. Zhang J, Zeng JL, Liu YY, Sun LX, Xu F, You WS, Sawada Y. Thermal decomposition kinetics of the synthetic complex Pb(1,4-BDC)center dot(DMF)(H2O). J Therm Anal Calorim. 2008;91:189–93.

    Article  CAS  Google Scholar 

  31. Song LF, Jiao CL, Jiang CH, Zhang J, Sun LX, Xu F, Jiao QZ, Xing YH, Huang FL, Du Y. Heat capacities and thermodynamic properties of MgNDC. J Therm Anal Calorim. doi:10.1007/s10973-010-0777-x.

  32. Jiang CH, Song LF, Zhang J, Sun LX, Xu F, Li F. Thermodynamic properties and heat capacities of Co (BTC) 1/3 (DMF) (HCOO). J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-0777-x.

  33. Williams GA, Blake AJ, Wilson C, Hubberstey P, Schröder M. Novel metal-organic frameworks derived from group II metal cations and aryldicarboxylate anionic ligands. Cryst Growth Des. 2008;8:911–22.

    Article  CAS  Google Scholar 

  34. Liu B, Zou RQ, Zhong RQ, Han S, Yamada HS, Maruta G, Takeda S, Xu Q. Microporous coordination polymers of cobalt(II) and manganese(II) 2,6-naphthalenedicarboxylate: preparations, structures and gas sorptive and magnetic properties. Microporous Mesoporous Mater. 2008;11:470–7.

    Article  Google Scholar 

  35. Archer DG. Thermodynamic properties of synthetic sapphire (alpha-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the National Natural Science Foundation of China (No. 20833009, 51071146, 51071081, 20873148, 20903095, 50901070 and U0734005), the National Basic Research Program (973 program) of China (2010CB631303), IUPAC (Project No. 2008-006-3-100), Dalian Science and Technology Foundation (2009A11GX052) and the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ10-1Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Xian Sun or Fen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, CH., Song, LF., Jiao, CL. et al. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim 103, 1095–1103 (2011). https://doi.org/10.1007/s10973-010-1197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1197-7

Keywords

Navigation