Skip to main content
Log in

Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal kinetics of mullite formation from both non-activated and mechanically activated kaolinite have been studied by differential thermal analysis (DTA). Kaolinite was mechanically activated in a planetary mill, while amorphization in the structure was studied by X-ray diffraction analysis. It was established that the mechanical activation especially affected the loss of structural water. The activation energies depending on the conversion for mullite formation have been calculated from the DTA curves by using the non-isothermal method of Coats and Redfern at heating rates of 5, 10, 15, and 20 °C min−1. The mechanical activation and amorphization of the kaolinite brings to the formation of mullite at a lower heating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Souto PM, Menezes RR, Kiminami RHGA. Sintering of commercial mullite powder: effect of MgO dopant. J Mater Process Technol. 2009;209:548–53.

    Article  Google Scholar 

  2. Behmanesh N, Heshmati-Manesh S, Ataie A. Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase. J Alloys Compd. 2008;450:421–5.

    Article  CAS  Google Scholar 

  3. Melo JDD, Costa TCC, Medeiros AM, Paskocimas CA. Effects of thermal and chemical treatments on physical properties of kaolinite. Ceram Int. 2010;36:33–8.

    Article  CAS  Google Scholar 

  4. Lee WE, Souza GP, McConville CJ, Tarvornpanich T, Iqbal Y. Mullite formation in clays and clay-derived vitreous ceramics. J Eur Ceram Soc. 2008;28:465–71.

    Article  CAS  Google Scholar 

  5. Kim BM, Cho YK, Yoon SY, Stevens R, Park HC. Mullite whiskers derived from kaolin. Ceram Int. 2009;35:579–83.

    Article  CAS  Google Scholar 

  6. Ganesh I, Ferreira JMF. Influence of raw material type and of the overall chemical composition on phase formation and sintered microstructure of mullite aggregates. Ceram Int. 2009;35:2007–15.

    Article  CAS  Google Scholar 

  7. Chen CY, Lan GS, Tuan WH. Preparation of mullite by the reaction sintering of kaolinite and alumina. J Eur Ceram Soc. 2000;20:2519–25.

    Article  CAS  Google Scholar 

  8. Tamborenea S, Mazzoni AD, Aglietti EF. Mechanochemical activation of minerals on the cordierite synthesis. Thermochim Acta. 2004;411:219–24.

    Article  CAS  Google Scholar 

  9. Mazzoni AD, Aglietti EF, Pereira E. Preparation of spinel powders at low temperature by mechanical activation. Latin Am Res. 1991;21:63–8.

    CAS  Google Scholar 

  10. Sugiyama K, Filio JM, Saito F, Waseda Y. Structural change of kaolinite and pyrophyllite induced by dry grinding. Miner J. 1994;17(1):28–41.

    Article  CAS  Google Scholar 

  11. Miyazaki M, Kamitani M, Nagai T, Kano T, Saito F. Amorphization of kaolinite and media motion in grinding by a double rotating cylinders mill—a comparison with a tumbling ball mill. Adv Powder Technol. 2000;11(2):235–44.

    Article  CAS  Google Scholar 

  12. Frost RL, Horvath E, Mako E, Kristof J, Redey A. Slow transformation of mechanically dehydroxylated kaolinite to kaolinite—an aged mechanochemically activated formadide-intercelated kaolinite study. Thermochim Acta. 2003;408:103–13.

    Article  CAS  Google Scholar 

  13. Vizcayno C, Castello R, Ranz I, Calvo B. Some physico-chemical alterations caused by mechanochemical treatments in kaolinites of different structural order. Thermochim Acta. 2005;428:173–83.

    Article  CAS  Google Scholar 

  14. Ebadzadeh T. Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite. J Alloys Compd. 2010;489:125–9.

    Article  CAS  Google Scholar 

  15. Sanchez-Soto PJ, Justo A, Perez-Rodriguez JL. Grinding effect on kaolinite–pyrophyllite–illite natural mixtures and its influence on mullite formation. J Mater Sci. 1994;29:1276–83.

    Article  CAS  Google Scholar 

  16. Nikaido M, Yoshizawa Y, Saito F. Effects of grinding on formation of mullite in a sintered body and its mechanical and thermal properties. J Chem Eng Jpn. 1996;29(3):456–63.

    Article  CAS  Google Scholar 

  17. Ryu H. Mixed grinding effect on kaolinite–aluminum trihydroxide mixture and its influence on mullite formation. J Korean Ceram Soc. 1997;34(2):195–201.

    CAS  Google Scholar 

  18. Ohlberg SM, Strickler DW. Determination of percent crystallinity of partly devitrified glass by X-ray diffraction. J Am Ceram Soc. 1962;45:170–1.

    Article  CAS  Google Scholar 

  19. Balaz P. Extractive metallurgy of activated minerals. Amsterdam: Elsevier; 2000.

    Google Scholar 

  20. Balaz P. Mechanochemistry in nanoscience and minerals engineering. Berlin: Springer; 2008.

    Google Scholar 

  21. Vyazovkin S. Isoconversional kinetics. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry. Amsterdam: Elsevier; 2008. p. 503–38.

    Google Scholar 

  22. Tromans D, Meech JA. Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation. Miner Eng. 2001;14(11):1359–77.

    Article  CAS  Google Scholar 

  23. Tromans D, Meech JA. Enhanced dissolution of minerals: microtopography and mechanical activation. Miner Eng. 1999;12(6):609–25.

    Article  CAS  Google Scholar 

  24. Aglietti EF, Porto Lopez JM, Pereira E. Mechanochemical effects in kaolinite grinding. I. Textural and physicochemical aspects. Int J Miner Process. 1986;16(1–2):125–33.

    Article  CAS  Google Scholar 

  25. Aglietti EF, Porto Lopez JM, Pereira E. Mechanochemical effects in kaolinite grinding. II. Structural aspects. Int J Miner Process. 1986;16(1–2):135–46.

    Article  CAS  Google Scholar 

  26. Miller JG, Oulton TD. Prototropy in kaolinite during percussive grinding. Clay Clay Miner. 1970;18(6):313–23.

    Article  CAS  Google Scholar 

  27. Chakraborty AK. DTA study of preheated kaolinite in the mullite formation region. Thermochim Acta. 2003;398:203–9.

    Article  CAS  Google Scholar 

  28. Sakizci M, Alver BE, Yörükoğullari E. Thermal behavior and immersion heats of selected clays from Turkey. J Therm Anal Calorim. 2009;98:429–36.

    Article  CAS  Google Scholar 

  29. Kamseu E, Rizzuti A, Miselli P, Veronesi P, Leonelli C. Use of noncontact dilatometry for the assessment of the sintering kinetics during mullitization of three kaolinitic clays from Cameroon. J Therm Anal Calorim. 2009;98:757–63.

    Article  CAS  Google Scholar 

  30. Chen YF, Wang MC, Hon MH. Phase transformation and growth of mullite in kaolin ceramics. J Eur Ceram Soc. 2004;24:2389–97.

    Article  CAS  Google Scholar 

  31. Chen YF, Wang MC, Hon MH. Transformation kinetics for mullite in kaolin–Al2O3 ceramics. J Mater Res. 2003;18(6):1355–62.

    Article  CAS  Google Scholar 

  32. Traore K, Gridi-Bennadji F, Blanchart P. Significance of kinetic theories on the recrystallization of kaolinite. Thermochim Acta. 2006;451:99–104.

    Article  CAS  Google Scholar 

  33. Tkacova K. Mechanical activation of minerals. Amsterdam: Elsevier; 1989.

    Google Scholar 

  34. Boldyrev VV, Tkacova T. Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process. 2000;8(3–4):121–32.

    Article  CAS  Google Scholar 

  35. Steinike U, Tkacova K. Mechanochemistry of solids—real structure and reactivity. J Mater Synth Process. 2000;8(3–4):197–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Özkan Toplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koç, S., Toplan, N., Yildiz, K. et al. Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim 103, 791–796 (2011). https://doi.org/10.1007/s10973-010-1154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1154-5

Keywords

Navigation