Skip to main content
Log in

DSC analysis of isothermally melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The multiple melting behavior of isothermally melt-crystallized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) from its melt was investigated using differential scanning calorimetry (DSC). PHBHHx exhibits a fourfold endothermic melting phenomenon, which were expressed as A, I, II, and III from low to high temperature, and attributed to the melting of secondary lamellae formed at room temperature, the melting of secondary lamellae at crystallization temperature, the melting of primary lamellae, and the melting of the recrystallized lamellae of different stabilities, respectively. Secondary crystallization is much slower than the primary crystallization and needs a relatively long period of time to occur. Furthermore, secondary crystallization at room temperature is heterogeneous, which depends on the presence of the primary lamellae and the secondary lamellae formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.

    Article  CAS  Google Scholar 

  2. Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–78.

    Article  CAS  Google Scholar 

  3. Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8.

    Article  CAS  Google Scholar 

  4. Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 1995;28:4822–8.

    Article  CAS  Google Scholar 

  5. Asrar J, Valentin HE, Berger PA, Tran M, Padgette SR, Garbow JR. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers. Biomacromolecules. 2002;3:1006–12.

    Article  CAS  Google Scholar 

  6. Fukui T, Abe H, Doi Y. Engineering of ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer. Biomacromolecules. 2002;3:618–24.

    Article  CAS  Google Scholar 

  7. Qiu YZ, Ouyang SP, Shen ZY, Wu Q, Chen GQ. Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila. Macromol Biosci. 2004;4:255–61.

    Article  CAS  Google Scholar 

  8. Chen GQ, Zhang G, Park SJ, Lee SY. Industrial scale production of poly(3-hydroxybutyrateco-3-hydroxyhexanoate). Appl Microbiol Biotechnol. 2001;57:50–5.

    Article  CAS  Google Scholar 

  9. Deng Y, Zhao K, Zhang XF, Hu P, Chen GQ. Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials. 2002;23:4049–56.

    Article  CAS  Google Scholar 

  10. Deng Y, Lin XS, Zheng Z, Deng JG, Chen JC, Ma H, Chen GQ. Poly(hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials. 2003;24:4273–81.

    Article  CAS  Google Scholar 

  11. Zhao K, Deng Y, Chen JC, Chen GQ. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials. 2003;24:1041–5.

    Article  CAS  Google Scholar 

  12. Wang Y, Bian YZ, Wu Q, Chen GQ. Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials. 2008;29:2858–68.

    Article  CAS  Google Scholar 

  13. Zhao K, Yang X, Chen GQ, Chen JC. Effect of lipase treatment on the biocompatibility of microbial polyhydroxyalkanoates. J Mater Sci. 2002;13:849–54.

    CAS  Google Scholar 

  14. Yang XS, Zhao K, Chen GQ. Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials. 2002;23:1391–7.

    Article  CAS  Google Scholar 

  15. Wang YW, Yang F, Wu Q, Cheng YC, Yu PHF, Chen JC, Chen GQ. Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials. 2005;26:755–61.

    Article  CAS  Google Scholar 

  16. Wang YW, Wu Q, Chen GQ. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials. 2004;25:669–75.

    Article  Google Scholar 

  17. Qu XH, Wu Q, Liang J, Qu X, Wang SG, Chen GQ. Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials. 2005;26:6991–7001.

    Article  CAS  Google Scholar 

  18. Qu XH, Wu Q, Liang J, Zou B, Chen GQ. Effect of 3-hydroxyhexanoate content in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on in vitro growth and differentiation of smooth muscle cells. Biomaterials. 2006;27:2944–50.

    Article  CAS  Google Scholar 

  19. Chen S, Wang PP, Wang JP, Chen GQ, Wu Q. Guided growth of smooth muscle cell on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds with uniaxial microtubular structures. J Biomed Mater Res A. 2008;86:849–56.

    Google Scholar 

  20. Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials. 2009;30:217–25.

    Article  CAS  Google Scholar 

  21. Ahmed J, Zhang JX, Song Z, Varshney SK. Thermal properties of polylactides Effect of molecular mass and nature of lactide isomer. J Therm Anal Calorim. 2009;95:957–64.

    Article  CAS  Google Scholar 

  22. Souza JDL, Kobelnik M, Ribeiro CA, Capela JMV, Crespi MS. Kinetic study of crystallization of PHB in presence of hydroxy acids. J Therm Anal Calorim. 2009;97:525–8.

    Article  Google Scholar 

  23. Mothé CG, Azevedo AD, Drumond WS, Wang SH. Thermal properties of amphiphilic biodegradable triblock copolymer of l,l-lactide and ethylene glycol. J Therm Anal Calorim. 2010;101:229–33.

    Article  Google Scholar 

  24. Nunes PS, Bezerra MS, Costa LP, Cardoso JC, Albuquerque RLC Jr, Rodrigues MO, Barin GB, Silva FAD, Araújo AAS. Thermal characterization of usnic acid/collagen-based films. J Therm Anal Calorim. 2010;99:1011–4.

    Article  CAS  Google Scholar 

  25. Yoo ES, Im SS. Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci B Polym Phys. 1999;37:1357–66.

    Article  CAS  Google Scholar 

  26. Yasuniwa M, Satou T. Multiple melting behavior of poly(butylene succinate) I. Thermal analysis of melt-crystallized samples. J Polym Sci B Polym Phys. 2002;40:2411–20.

    Article  CAS  Google Scholar 

  27. Qiu ZB, Komura M, Ikehara T, Nishi T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer. 2003;44:7781–5.

    Article  CAS  Google Scholar 

  28. Yasuniwa M, Tsubakihara S, Satou T, Iura K. Multiple melting behavior of poly(butylene succinate) II. thermal analysis of isothermal crystallization and melting process. J Polym Sci B Polym Phys. 2005;43:2039–47.

    Article  CAS  Google Scholar 

  29. Ling XY, Spruiell JE. Analysis of the complex thermal behavior of poly(L-lactic acid) film. I. samples crystallized from the glassy state. J Polym Sci B Polym Phys. 2006;44:3200–14.

    Article  CAS  Google Scholar 

  30. Pan PJ, Kai WH, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules. 2007;40:6898–905.

    Article  CAS  Google Scholar 

  31. Gunaratne LMWK, Shanks RA, Amarasinghe G. Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim Acta. 2004;423:127–35.

    Article  CAS  Google Scholar 

  32. Gunaratne LMWK, Shanks RA. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Euro Polym J. 2005;41:2980–8.

    Article  CAS  Google Scholar 

  33. Gunaratne LMWK, Shanks RA. Melting and thermal history of poly(hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Thermochim Acta. 2005;430:183–90.

    Article  CAS  Google Scholar 

  34. Liu T, Petermann J. Multiple melting behaviour in isothermally cold-crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.

    Article  CAS  Google Scholar 

  35. Watanabe T, He Y, Fukuchi T, Inoue Y. Comonomer compositional distribution and thermal characteristics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s. Macromol Biosci. 2001;1:75–83.

    Article  CAS  Google Scholar 

  36. Abe H, Doi Y, Aoki H, Akehata T. Solid-state structures and enzymatic degradabilities for melt-crystallized films of copolymers of (R)-3-hydroxybutyric acid with different hydroxyalkanoic acids. Macromolecules. 1998;31:1791–7.

    Article  CAS  Google Scholar 

  37. Feng L, Watanabe T, Wang Y, Kichise T, Fukuchi T, Chen GQ, Doi Y, Inoue Y. Studies on comonomer compositional distribution of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s and thermal characteristics of their factions. Biomacromolecules. 2002;3:1071–7.

    Article  CAS  Google Scholar 

  38. Chen C, Cheung MK, Yu PHF. Crystallization kinetics and melting behaviour of microbial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym Int. 2005;54:1055–64.

    Article  CAS  Google Scholar 

  39. Sato H, Nakamura M, Padermshoke A, Yamaguchi H, Terauchi H, Ekgasit S, Noda I, Ozaki Y. Thermal behavior and molecular interaction of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by Wide-angle X-ray diffraction. Macromolecules. 2004;37:3763–9.

    Article  CAS  Google Scholar 

  40. Feng L, Watanabe T, He Y, Wang Y, Kichise T, Fukuchi T, Chen GQ, Doi Y, Inoue Y. Phase behavior and thermal properties for binary blends of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s with narrow-comonomer-unit compositional distribution. Macromol Biosci. 2003;3:310–9.

    Article  CAS  Google Scholar 

  41. Hu Y, Zhang JM, Sato H, Noda I, Ozaki Y. Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer. 2007;48:4777–85.

    Article  CAS  Google Scholar 

  42. Gan ZH, Kuwabara K, Abe H, Doi Y. The solid-state structure, thermal and crystalline properties of bacterial copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyhexanoic acid. Biodegradable polymers and plastics. In: Proceedings of the seventh world conference on biodegradable polymers & plastics, Terrenia, Italy, June 4–8, 2002 (2003), Meeting Date 2002, p. 167–184.

  43. Wu Q, Tian G, Sun SQ, Noda I, Chen GQ. Study of microbial polyhydroxyalkanoates using two-dimensional Fourier-transform infrared correlation spectroscopy. J Appl Polym Sci. 2001;82:934–40.

    Article  CAS  Google Scholar 

  44. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand. 1962;A66:13–28.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the Tianjin Municipal Natural Science Foundation of China (Contract grant number: 08JCZDJC24600). We also thank Prof. S. Z. Wu for his work on the differential scanning calorimetry and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowen Cheng or Qiong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, C., Cheng, B. & Wu, Q. DSC analysis of isothermally melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films. J Therm Anal Calorim 103, 1001–1006 (2011). https://doi.org/10.1007/s10973-010-1135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1135-8

Keywords

Navigation