Skip to main content
Log in

Study of adsorption sites heterogeneity in zeolites by means of coupled microcalorimetry with volumetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Adsorption of CO2 as probe molecule on alkali-metal zeolites of MFI structure was investigated by joint volumetry–calorimetry. Consideration was given to the interpretation of the heat evolved when a probe molecule is adsorbed on the surface. In particular, the number and the strength of adsorption sites are discussed as functions of zeolite structure, concentration, and nature of extra-framework cation. The adsorption heats (q iso) of CO2 interaction with alkali-metal cations decrease for MFI zeolite with high Si/Al in the sequence Li+ > Na+ > K+ from 54 kJ/mol to 49 and 43 kJ/mol, respectively. In addition, the adsorption heats are influenced by concentration of Al in the framework. This phenomenon is attributed to formation of bridged CO2 adsorption complexes formed between two cations. On the base of quantitative analysis of adsorption processes, presence of geminal adsorption complexes was suggested for adsorption at higher equilibrium pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill TL. Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption. J Chem Phys. 1949;17(6):520–35.

    Article  CAS  Google Scholar 

  2. Song CS. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today. 2006;115(1–4):2–32.

    Article  CAS  Google Scholar 

  3. Harlick PJE, Tezel FH. Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep Purif Technol. 2003;33(2):199–210.

    Article  CAS  Google Scholar 

  4. Dunne JA, Rao M, Sircar S, Gorte RJ, Myers AL. Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites. Langmuir. 1996;12(24):5896–904.

    Article  CAS  Google Scholar 

  5. Sircar S. Basic research needs for design of adsorptive gas separation processes. Ind Eng Chem Res. 2006;45(16):5435–48.

    Article  CAS  Google Scholar 

  6. Ghoufi A, Gaberova L, Rouquerol J, Vincent D, Llewellyn PL, Maurin G. Adsorption of CO2, CH4 and their binary mixture in faujasite NaY: a combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements. Microporous Mesoporous Mater. 2009;119(1–3):117–28.

    Article  CAS  Google Scholar 

  7. Bonelli B, Civalleri B, Fubini B, Ugliengo P, Arean CO, Garrone E. Experimental and quantum chemical studies on the adsorption of carbon dioxide on alkali-metal-exchanged ZSM-5 zeolites. J Phys Chem B. 2000;104(47):10978–88.

    Article  CAS  Google Scholar 

  8. Siriwardane RV, Shen MS, Fisher EP. Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels. 2005;19(3):1153–9.

    Article  CAS  Google Scholar 

  9. Harlick PJE, Tezel FH. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 2004;76(1–3):71–9.

    Article  CAS  Google Scholar 

  10. Bourrelly S, Maurin G, Llewellyn PL. Adsorption microcalorimetry of methane and carbon dioxide on various zeolites. In: Cejka J, Zilkova N, Nachtigall P, editors. Molecular sieves: from basic research to industrial applications, pts A and B. Studies in surface science and catalysis; 2005. p. 1121–8.

  11. Erten Y, Gunes-Yerkesikli A, Cetin AE, Cakicioglu-Ozkan F. CO2 adsorption and dehydration behavior of LiNaX, KNaX, CaNaX and CeNaX zeolites. J Therm Anal Calorim. 2008;94(3):715–8.

    Article  CAS  Google Scholar 

  12. Treacy MMJ, Higgins JB. Collection of simulated XRD powder patterns for zeolites. Amsterdam: Elsevier; 2001.

    Google Scholar 

  13. Yamazaki T, Katoh M, Ozawa S, Ogino Y. Adsorption of CO2 over univalent cation-exchanged ZSM-5 zeolites. Mol Phys. 1993;80(2):313–24.

    Article  CAS  Google Scholar 

  14. Barrer RM, Gibbons RM. Zeolitic carbon dioxide: energetics and equilibria in relation to exchangeable cations in faujasite. Trans Faraday Soc. 1965;61:948–61.

    Article  CAS  Google Scholar 

  15. Plant DF, Maurin G, Deroche I, Llewellyn PL. Investigation of CO2 adsorption in faujasite systems: grand canonical monte carlo and molecule dynamics simulations based on a new derived Na+–CO2. Microporous Mesoporous Mater. 2007;99(1–2):70–8.

    Article  CAS  Google Scholar 

  16. Pulido A, Nachtigall P, Zukal A, Dominguez I, Cejka J. Adsorption of CO2 on sodium-exchanged ferrierites: the bridged CO2 complexes formed between two extraframework cations. J Phys Chem C. 2009;113(7):2928–35.

    Article  CAS  Google Scholar 

  17. Bulanek R, Frolich K, Frýdová E, Cicmanec P. Microcalorimetric and FTIR study of the adsorption of carbon dioxide on alkali-metal exchanged FER zeolites. Topics in Catalysis. doi:10.1007/s11244-010-9593-6

  18. Zukal A, Pulido A, Gil B, Nachtigall P, Bludsky O, Rubes M, et al. Experimental and theoretical determination of adsorption heats of CO2 over alkali metal exchanged ferrierites with different Si/Al ratio. Phys Chem Chem Phys. 2010;12(24):6413–22.

    Article  CAS  Google Scholar 

  19. Zukal A, Mayerova J, Cejka J. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption. Phys Chem Chem Phys. 2010;12:5240–7.

    Article  CAS  Google Scholar 

  20. Plant DF, Maurin G, Deroche I, Gaberova L, Llewellyn PL. CO2 adsorption in alkali cation exchanged Y faujasites: a quantum chemical study compared to experiments. Chem Phys Lett. 2006;426(4–6):387–92.

    Article  CAS  Google Scholar 

  21. Zukal A, Pawlesa J, Cejka J. Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations. Adsorption. 2009;15(3):264–70.

    Article  CAS  Google Scholar 

  22. Maurin G, Belmabkhout Y, Pirngruber G, Gaberova L, Llewellyn P. CO2 adsorption in LiY and NaY at high temperature: molecular simulations compared to experiments. Adsorption. 2007;13(5–6):453–60.

    Article  CAS  Google Scholar 

  23. Kucera J, Nachtigall P. Coordination of alkali metal ions in ZSM-5: a combined quantum mechanics/interatomic potential function study. Phys Chem Chem Phys. 2003;5(15):3311–7.

    Article  CAS  Google Scholar 

  24. Arean CO, Delgado MR, Frolich K, Bulanek R, Pulido A, Bibiloni GF, et al. Computational and Fourier transform infrared spectroscopic studies on carbon monoxide adsorption on the zeolites Na-ZSM-5 and K-ZSM-5: evidence of dual-cation sites. J Phys Chem C. 2008;112(12):4658–66.

    Article  CAS  Google Scholar 

  25. Bonelli B, Fubini B, Onida B, Palomino GT, Delgado MR, Arean CO, et al. Room temperature interaction of co with alkali-metal cations in M-ZSM-5 zeolites as studied by joint FT-IR spectroscopy and microcalorimetry. Oxide based materials: new sources, novel phases, new applications. Studies in surface science and catalysis; 2005. p. 95–102.

  26. Arean CO, Manoilova OV, Delgado MR, Tsyganenko AA, Garrone E. Formation of several types of coordination complexes upon CO adsorption on the zeolite Li-ZSM-5. Phys Chem Chem Phys. 2001;3(19):4187–8.

    Article  Google Scholar 

  27. Dunne JA, Mariwala R, Rao M, Sircar S, Gorte RJ, Myers AL. Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir. 1996;12(24):5888–95.

    Article  CAS  Google Scholar 

  28. Maurin G, Bell RG, Llewellyn PL. CO2 adsorption in faujasite systems: microcalorimetry and molecular simulation. In: Cejka J, Zilkova N, Nachtigall P, editors. Molecular sieves: from basic research to industrial applications, pts A and B. Studies in surface science and catalysis; 2005. p. 955–62.

  29. Bourrelly S, Maurin G, Llewellyn PL. Adsorption microcalorimetry of methane and carbon dioxide on various zeolites. Stud Surf Sci Catal. 2005;158:1121–8.

    Article  Google Scholar 

  30. Bonelli B, Onida B, Fubini B, Arean CO, Garrone E. Vibrational and thermodynamic study of the adsorption of carbon dioxide on the zeolite Na-ZSM-5. Langmuir. 2000;16(11):4976–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A financial support of the Grant Agency of the Czech Republic under the project No. 203/09/0143 and Ministry of Education of Czech Republic under project No. MSM 0021627501 and LC 512 are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Bulánek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulánek, R., Frolich, K., Frýdová, E. et al. Study of adsorption sites heterogeneity in zeolites by means of coupled microcalorimetry with volumetry. J Therm Anal Calorim 105, 443–449 (2011). https://doi.org/10.1007/s10973-010-1108-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1108-y

Keywords

Navigation