Skip to main content
Log in

Synthesis and characterisation of the compound CoSbS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the search for new intermetallic materials with high thermoelectric performances, the Co–Sb–S ternary system has been explored and polycrystalline CoSbS samples have been prepared by a vapour phase technique starting from the pure elements. The crystal cell of CoSbS belongs to the Pbca space group and shows an orthorhombic structural arrangement with the following lattice parameters: a = 5.8341(2) Å; b = 5.9477(2) Å, and c = 11.6540(4) Å. The structure belongs to the pyrite–marcasite family, as Co forms tilted corner- and edge-sharing octahedra with three Sb and three S atoms. Scanning electronic microscopy (SEM), electron-probe microanalysis (EPMA) and X-ray powder diffraction were used to investigate the microstructure and to carry out the structural analysis; the crystal structure was refined by the Rietveld method using the DBWS-9807 program. The thermal stability of CoSbS was investigated referring to the ternary Co–S–Sb phase diagram and by differential thermal analysis (DTA) measurements. Thermoelectric power measurements at room temperature were also performed by a home-made instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–14.

    Article  CAS  Google Scholar 

  2. Kawaharada Y, Kurosaki K, Uno M, Yamanaka S. Thermoelectric properties of CoSb3. J Alloys Compd. 2001;315:193–7.

    Article  CAS  Google Scholar 

  3. Zhang JX, Lu QM, Liu KG, Zhang L, Zhou ML. Synthesis and thermoelectric properties of CoSb3 compounds by spark plasma sintering. Mater Lett. 2004;58:1981–4.

    Article  CAS  Google Scholar 

  4. Furuyama S, Iida T, Matsui S, Akasaka M, Nishio K, Takanashi Y. Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering. J Alloys Compd. 2006;415:251–6.

    Article  CAS  Google Scholar 

  5. Nakamoto G, Yoshida Y, Vu LV, Huong NT, Anh DTK, Kurisu M. Effect of segregated impurity phases on lattice thermal conductivity in Y-added CoSb3. Scr Mater. 2007;56:269–72.

    Article  CAS  Google Scholar 

  6. Jiang YP, Jia XP, Su TC, Dong N, Yu FR, Tian YJ, Guo W, Xu HW, Deng L, Ma HA. Thermoelectric properties of Sm x Co4Sb12 prepared by high pressure and high temperature. J Alloys Compd. 2010;493:535–8.

    Article  CAS  Google Scholar 

  7. Mi JL, Zhao XB, Zhu TJ, Tu JP. Nanosized La filled CoSb3 prepared by a solvothermal-annealing method. Mater Lett. 2008;62:2363–5.

    Article  CAS  Google Scholar 

  8. Wojciechowski KT. Effect of tellurium doping on the thermoelectric properties of CoSb3. Mater Res Bull. 2002;37:2023–33.

    Article  CAS  Google Scholar 

  9. Chitroub M, Besse F, Scherrer H. Thermoelectric properties of semi-conducting compound CoSb3 doped with Pd and Te. J Alloys Compd. 2009;467:31–4.

    Article  CAS  Google Scholar 

  10. Kim I-H, Park K-H, Ur S-C. Thermoelectric properties of Sn-doped CoSb3 prepared by encapsulated induction melting. J Alloys Compd. 2007;442:351–4.

    Article  CAS  Google Scholar 

  11. Wojciechowski KT, Tobola J, Leszczyński J. Thermoelectric properties and electronic structure of CoSb doped with Se and Te. J Alloys Compd. 2003;361:19–27.

    Article  CAS  Google Scholar 

  12. Kim IH, Ur SC. Electronic transport properties of Fe-doped CoSb3 prepared by encapsulated induction melting. Mater Lett. 2007;61:2446–50.

    Article  CAS  Google Scholar 

  13. Kitagawa H, Wakatsuki M, Nagaoka H, Noguchi H, Isoda Y, Hasezaki K, Noda Y. Temperature dependence of thermoelectric properties of Ni-doped CoSb3. J Phys Chem Solids. 2005;66:1635–9.

    Article  CAS  Google Scholar 

  14. Al-Ghamdi AA. Thermoelectric power (TEP) of layered chalcogenides GaTe crystals. J Therm Anal Calorim. 2008;94:597–600.

    Article  CAS  Google Scholar 

  15. Vaqueiro P, Sobany GG, Stindl M. Structure and electrical transport properties of the ordered skutterudites MGe1.5S1.5 (M = Co, Rh, Ir). J Solid State Chem. 2008;181:768–76.

    Article  CAS  Google Scholar 

  16. Bos JWG, Cava RJ. Synthesis, crystal structure and thermoelectric properties of IrSn1.5Te1.5-based skutterudites. Solid State Commun. 2007;141:38–41.

    Article  CAS  Google Scholar 

  17. Laufek F, Navrátil, Plášil J, Plecháček T. Crystal structure determination of CoGeTe from powder diffraction data. J Alloys Compd. 2008;460:155–9.

    Article  CAS  Google Scholar 

  18. Vaqueiro P, Sobany GG, Guinet F, Leyva-Bailen P. Synthesis and characterization of the anion-ordered tellurides MGeTe. Solid State Sci. 2009;11:1077–82.

    Article  CAS  Google Scholar 

  19. Schenck R, Von der Forst P. Gleichgewichtsstudien and erzbildenden Sulfiden III. Z Anorg Allg Chem. 1942;249:76–87.

    Article  CAS  Google Scholar 

  20. Allazov MR, Gulieva ZT. Physicochemical interaction in the CoS–Sb and NiS–Sb systems. Russ J Inorg Chem. 1988;33:1075–8.

    Google Scholar 

  21. Young RA, Sakthiel A, Moss TS, Paiva-Santos CO. DBWS-9411, an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J Appl Cryst. 1995;28:366–7.

    Article  Google Scholar 

  22. Uher C. Skutterudite-based thermoelectrics. In: Rowe DM, editor. Thermoelectrics handbook. Boca Raton: Taylor & Francis; 2006. p. 34-1–17.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. D. Macciò for his helpful contribution with DTA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Artini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlini, R., Artini, C., Borzone, G. et al. Synthesis and characterisation of the compound CoSbS. J Therm Anal Calorim 103, 23–27 (2011). https://doi.org/10.1007/s10973-010-1034-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1034-z

Keywords

Navigation