Skip to main content
Log in

Study on radiative heat transfer property of fiber assemblies using FTIR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Radiative heat transfer could be a significant contribution to the total heat transfer within the highly porous materials. This article reports on the use of a conventional instrument, viz. Fourier transform infrared (FTIR) spectroscopy, for the characterization of radiative heat properties of fiber assemblies with low bulk densities. Experimental measurements on spectral transmission with FTIR were performed on five types of fiber assemblies commonly used for insulating materials. From the measurements, radiative heat conductivity was determined by calculating extinction coefficient using Beer’s Law and applying the diffusion approximation approach. Bulk density, fiber arrangement, and temperature influences to radiative heat transfer were discussed. Results show that radiative heat conductivity decreases with bulk density and that of the random arranged fiber assemblies shows lower radiative heat conductivity than the random ball and parallel arranged fiber assemblies. Radiative heat conductivity is proportional to the cubic temperature. The existing theoretical model was modified by comparing theoretical and experimental radiative heat conductivity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holcombe BV, Hoschke N. Dry heat transfer characteristics of underwear fabrics. Text Res J. 1983;53:368–74.

    Article  Google Scholar 

  2. Farnworth B. Mechanisms of heat flow through clothing insulation. Text Res J. 1983;53:717–25.

    Article  Google Scholar 

  3. Fricke J, Stark C. Improved heat-transfer models for fibrous insulations. J Heat Mass Transf. 1993;36:617–25.

    Article  Google Scholar 

  4. Tong TW, Yang QS, Tien CL. Radiative heat transfer in fibrous insulations—part II: experimental analytic study. J Heat Transf. 1983;105:76–81.

    Article  CAS  Google Scholar 

  5. Daryabeigi K. Heat transfer in high temperature fibrous insulation. J Thermophys Heat Transf. 2003;17:10–20.

    Article  CAS  Google Scholar 

  6. Zhao SY, Zhang BM, He XD. Temperature and pressure dependent effective thermal conductivity of fibrous insulation. Int J Heat Mass Transf. 2009;48:440–8.

    CAS  Google Scholar 

  7. Lee SC, Cunnington GR. Conduction and radiation heat transfer in high porosity fiber thermal insulation. J Thermophys Heat Transf. 2000;44:121–36.

    Article  Google Scholar 

  8. Yuen WW. Radiative heat transfer analysis of fibrous insulation materials using the Zonal-GEF method. J Thermophys Heat Transf. 2007;21:105–13.

    Article  CAS  Google Scholar 

  9. Coquard R, Baillis D, Quenard D. Experimental and theoretical study of the hot-ring method applied to low-density thermal insulators. Int J Heat Transf. 2008;47:324–38.

    Google Scholar 

  10. Wu HJ, Fan JT, Du N. Porous materials with thin interlayers for optimal thermal insulation. Int J Nonlinear Sci. 2009;10:291–300.

    Google Scholar 

  11. Stuart IM, Holcombe BV. Heat transfer through fiber beds by radiation with shading and conduction. Text Res J. 1984;54:149–57.

    Article  Google Scholar 

  12. Skelton J, Dent R, Donovan JG. Thermal and mechanical properties of down. In: Proceedings of the 7th international wool textile research conference, vol III; 1985. p. 264–73.

  13. Fl Zhu, Li KJ. Determining effective thermal conductivity of fabrics by using fractal method. Int J Thermophys. 2010;31:612–9.

    Article  Google Scholar 

  14. Wu HJ, Fan JT, Du N. Thermal energy transport within porous polymer materials: effects of fiber characteristics. Appl Polym Sci. 2007;106:576–83.

    Article  CAS  Google Scholar 

  15. Du N, Fan JT, Wu HJ, Sun WW. Optimal porosity distribution of fibrous insulation. Int J Heat Mass Transf. 2009;52:4350–7.

    Article  CAS  Google Scholar 

  16. Strong HM, Bundy FP, Bovenkerk HP. Flat panel vacuum thermal insulation. J Appl Phys. 1960;31:39–50.

    Article  Google Scholar 

  17. Davis LB, Birkebak RC. On the transfer of energy in layers of fur. Biophys J. 1974;14:249–68.

    Article  Google Scholar 

  18. Mohammadi M. PhD thesis, University of North Carolina State University, America; 1998.

  19. Hu JY, Li Y, Yeung KW, Wang SX. Characterization of thermal radiation properties of polymeric materials. Polym Test. 2006;25:405–12.

    Article  CAS  Google Scholar 

  20. Zhang H, Hu TL, Zhang JC. Transmittance of infrared radiation through fabric in the range 8–14 μm. Text Res J. 2010;0:1–6.

    Google Scholar 

  21. Capek P, Drábik M, Turjan J. Characterization of starch and its mono and hybrid derivatives by thermal analysis and FTIR spectroscopy. J Therm Anal Calorim. 2009;99:667–73.

    Article  Google Scholar 

  22. Mothé CG, de Miranda IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97:661–5.

    Article  Google Scholar 

  23. Bernazzani P, Sanchez RF. Structural and thermal behavior of polystyrene thin films using ATR–FTIR–Nano DSC measurements. J Therm Anal Calorim. 2009;96:727–32.

    Article  CAS  Google Scholar 

  24. Tseng CJ, K KT. Thermal radiative properties of phenolic foam insulation. J Quant Spectrosc Radiat. 2002;72:349–59.

    Article  CAS  Google Scholar 

  25. Wu HJ, Fan JT. Measurement of radiative thermal properties of thin polymer films by FTIR. Test Method. 2008;27:122–8.

    CAS  Google Scholar 

  26. Vallabh R, Lee PB, Mohammadi M. Determination of radiative thermal conductivity in needlepunched nonwovens. J Eng Fibers Fabr. 2008;3:46–52.

    Google Scholar 

  27. Bejan A. Convective heat transfer. 2nd ed. New York: Wiley; 1993.

    Google Scholar 

  28. Siegel R, Howell JR. Thermal radiation heat transfer. 2nd ed. London: Taylor & Francis; 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, W.F., Yu, W.D. Study on radiative heat transfer property of fiber assemblies using FTIR. J Therm Anal Calorim 103, 785–790 (2011). https://doi.org/10.1007/s10973-010-1025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1025-0

Keywords

Navigation