Skip to main content
Log in

Comparison of thermal conductivities of polypropylene fibers and fibrils

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this work, we compared thermal conductivities of polypropylene fibers and fibrils. The polypropylene fibers were melt spun, and oriented by solid-state drawing. Both wide-angle X-ray scattering and sonic velocity measurements were performed to determine the orientation of fibers. The thermal conductivities of fibers were measured via direct electrical heating method, and that of fibrils were measured via thermal bridge method. Our results show that the thermal conductivity of polypropylene fibers increases linearly with their sonic velocity. This suggests we can use the sonic velocity to characterize the thermal conductivity of semicrystalline polymers. Our results also indicate the average thermal conductivity of fibrils is close to that of fibers. This implies that the low thermal conductivity of polymer fibers is due to the low thermal conductivity of fibrils, instead of thermal resistance between fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R 132:1–22

    Article  Google Scholar 

  2. Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Adv Mater 30:1705544

    Article  Google Scholar 

  3. Liu Y, Zhou Y, Xu Y (2022) State-of-the-art, opportunities, and challenges in bottom-up synthesis of polymers with high thermal conductivity. Polym Chem 13:4462–4483

    Article  Google Scholar 

  4. Choy CL, Chen FC, Luk WH (1980) Thermal conductivity of oriented crystalline polymers. J Polym Sci Polym Phys Ed 18:1187–1207

    Article  Google Scholar 

  5. Shen S, Henry A, Tong J, Zheng R, Chen G (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5:251–255

    Article  Google Scholar 

  6. Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, Wang J, Li M, Ghasemi H, Huang X, Li X, Chen G (2019) Nanostructured polymer films with metal-like thermal conductivity. Nat Commun 10:1771

    Article  Google Scholar 

  7. Zhu B, Liu J, Wang T, Han M, Valloppilly S, Xu S, Wang X (2017) Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega 2:3931–3944

    Article  Google Scholar 

  8. Singh V, Bougher TL, Weathers A, Cai Y, Bi K, Pettes MT, McMenamin SA, Lv W, Resler DP, Gattuso TR, Altman DH, Sandhage KH, Shi L, Henry A, Cola BA (2014) High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol 9:384–390

    Article  Google Scholar 

  9. McDaniel PB, Deitzel JM, Gillespie JW (2015) Structural hierarchy and surface morphology of highly drawn ultra high molecular weight polyethylene fibers studied by atomic force microscopy and wide angle x-ray diffraction. Polymer 69:148–158

    Article  Google Scholar 

  10. Petersmann S, Spoerk-Erdely P, Feuchter M, Wieme T, Arbeiter F, Spoerk M (2020) Process-induced morphological features in material extrusion-based additive manufacturing of polypropylene. Addit Manuf 35:101384

    Google Scholar 

  11. Zhao G, Li X, Tian Y, Wu G, Zhang Y, Jiang W, Yang J, Ni Z (2021) Poly(L-lactic acid) monofilaments for biodegradable braided self-expanding stent. J Mater Sci 56:12383–12393

    Article  Google Scholar 

  12. Liu F, Liu X, Ai W, You S, Wang Y, Yang H, Bai Z, Liu H (2020) Optimization of the pre-tension and separation distance for measurement of the dynamic elastic modulus and macromolecular orientation of a polypropylene monofilament via the sonic velocity method. Rev Sci Instrum 91:123906

    Article  Google Scholar 

  13. Yang J, Shen M, Yang Y, Evans WJ, Wei Z, Chen W, Zinn AA, Chen Y, Prasher R, Xu TT, Keblinski P, Li D (2014) Phonon transport through point contacts between graphitic nanomaterials. Phys Rev Lett 112:205901

    Article  Google Scholar 

  14. Yang J, Kong L, Mu B, Zhang H, Li Y, Cao W (2019) Measurement of intrinsic thermal conductivity of carbon fiber using direct electrical heating method. Rev Sci Instrum 90:114902

    Article  Google Scholar 

  15. Wang X, Yang J, Xiong Y, Huang B, Xu TT, Li D, Xu D (2018) Measuring nanowire thermal conductivity at high temperatures. Meas Sci Technol 29:025001

    Article  Google Scholar 

  16. Wang X (2012) Experimental micro/nanoscale thermal transport. John Wiley & Sons Inc, New Jersey

    Book  Google Scholar 

  17. Wingert MC, Chen ZCY, Kwon S, Xiang J, Chen R (2012) Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Rev Sci Instrum 83:024901

    Article  Google Scholar 

  18. Yang J, Tang H, Zhao Y, Zhang Y, Li J, Ni Z, Chen Y, Xu D (2015) Thermal conductivity of zinc blende and wurtzite CdSe nanostructures. Nanoscale 7:16071–16078

    Article  Google Scholar 

  19. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  Google Scholar 

  20. Sun Y, Yang J (2020) Uncertainty analysis of the thermal bridge method. Int J Thermophys 41:146

    Article  Google Scholar 

  21. Ma J, Zhang Q, Mayo A, Ni Z, Yi H, Chen Y, Mu R, Bellan LM, Li D (2015) Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale 7:16899–16908

    Article  Google Scholar 

  22. Yang J, Yang Y, Waltermire SW, Wu X, Zhang H, Gutu T, Jiang Y, Chen Y, Zinn AA, Prasher R, Xu TT, Li D (2012) Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat Nanotechnol 7:91–95

    Article  Google Scholar 

  23. Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner HD, Marom G (2001) Lamellar twisting in \(\alpha\) isotactic polypropylene transcrystallinity investigated by synchrotron microbeam X-ray diffraction. Polymer 42:6231–6237

    Article  Google Scholar 

  24. Moseley WW (1960) The measurement of molecular orientation in fibers by acoustic methods. J Appl Polym Sci 3:266–276

    Article  Google Scholar 

  25. Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B (2020) A ubiquitous thermal conductivity formula for liquids, polymer glass, and amorphous solids. Chin Phys Lett 37:104401

    Article  Google Scholar 

  26. Mochizuki M, Nakayama K, Qian R, Jiang B-Z, Hirami M, Hayashi T, Masuda T, Nakajima A (1997) Studies on biodegradable poly(hexano-6-lactone) fibers 1. Structure and properties of drawn poly(hexano-6-lactone) fibers (Technical Report). Pure Appl Chem 69:2567–2575

    Article  Google Scholar 

  27. Liu J, Yang R (2012) Length-dependent thermal conductivity of single extended polymer chains. Phys Rev B 86:104307

    Article  Google Scholar 

Download references

Funding

This work was supported by the Department of Science and Technology of Jiangsu Province (BK20220032), the National Natural Science Foundation of China (52206092, 52127811), Natural Science Foundation of Jiangsu Province (No. BK20210565), and the Fundamental Research Funds for the Central Universities (2242022K40022).

Author information

Authors and Affiliations

Authors

Contributions

Investigation: Hao Yin, Chenhan Liu, Bin Wang, Yong Li, Xue Hu, Junyao Yin; Formal analysis: Hao Yin, Chenhan Liu; Visualization: Jinbo Liu; Writing - Original Draft: Hao Yin; Writing - Review & Editing: Chenhan Liu, Gutian Zhao, Juekuan Yang; Conceptualization: Gutian Zhao, Juekuan Yang; Supervision: Juekuan Yang.

Corresponding authors

Correspondence to Gutian Zhao or Juekuan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Liu, C., Wang, B. et al. Comparison of thermal conductivities of polypropylene fibers and fibrils. Heat Mass Transfer 60, 677–684 (2024). https://doi.org/10.1007/s00231-024-03463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-024-03463-2

Navigation