Skip to main content
Log in

Thermal properties of microcrystalline cellulose-filled PET–PTT blend polymer composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polymer composite materials were prepared from poly(ethylene terephthalate)–poly(trimethylene terephthalate) blends as the matrix and different microcrystalline cellulose (MCC) filler levels (0–40 wt%) using melt compounding followed by compression molding. The composites were analyzed using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The DSC results indicated that there is no consistent or significant influence of the MCC addition on the glass transition (T g), melting (T m), and crystallization temperature of the composites. With increasing MCC content, dynamic mechanical properties improved because of the reinforcing effect of the MCC. The tan δ peak values from the DMTA were not significantly changed as the MCC content increased. TG indicated that the onset temperature of rapid thermal degradation decreased with increasing MCC content. It was also found that the thermal stability of the composites slightly decreased as the MCC content increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Helbert W, Cavaillé JY, Dufresne A. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos. 1996;17(4):604–11.

    Article  CAS  Google Scholar 

  2. Azizi Samir MAS, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6(2):612–26.

    Article  Google Scholar 

  3. Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol. 2007;67(11–12):2535–44.

    Article  CAS  Google Scholar 

  4. Panaitescu DM, Notingher PV, Ghiurea M, Ciuprina F, Paven H, Iorga M, Florea D. Properties of composite materials from polyethylene and cellulose microfibrils. J Optoelectron Adv Mater. 2007;9(8):2524–8.

    CAS  Google Scholar 

  5. Bondeson D, Kvien I, Oksman K. Strategies for preparation of cellulose whiskers from microcrystalline cellulose as reinforcement in nanocomposites. Am Chem Soc (ACS symposium series; 938);2006:10–25.

    Google Scholar 

  6. Goodrich JD. The utilization of cellulose and chitin nanoparticles in biodegradable and/or biobased thermoplastic nanocomposites. PhD dissertation, State University of New York College of Environmental Science and Forestry, Syracuse, New York, U.S.; 2007.

  7. Panaitescu DM, Donescu D, Bercu C, Vuluga DM, Iorga M, Ghiurea M. Polymer composites with cellulose microfibrils. Polym Eng Sci. 2007;47(8):1228–34.

    Article  CAS  Google Scholar 

  8. Sturcova A, Davies GR, Eichhorn SJ. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. 2005;6(2):1055–61.

    Article  CAS  Google Scholar 

  9. Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufrense A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM. Review current international research into cellulosic fibers and composites. J Mater Sci. 2001;36:2107–31.

    Article  CAS  Google Scholar 

  10. Wielage B, Lampke T, Marx G, Nestler K, Starke D. Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta. 1999;337(1–2):169–77.

    Article  CAS  Google Scholar 

  11. Kim H-S, Kim S, Kim H-J, Yang H-S. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta. 2006;451(2):181–8.

    Article  CAS  Google Scholar 

  12. Kim H-S, Yang H-S, Kim H-J, Lee B-J, Hwang T-S. Thermal properties of agro-flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim. 2005;81(2):299–306.

    Article  CAS  Google Scholar 

  13. Laka MG, Chernyavskaya SA. Physicomechanical properties of composites containing Thermocell microcrystalline cellulose as filler. Mech Compos Mater. 1996;32(4):381–6.

    Article  Google Scholar 

  14. Maskavs A, Kalnins M, Laka M, Chernyavskaya S. Physicomechanical properties of composites based on low-density polyethylene and cellulose-containing filers. Mech Compos Mater. 2001;37(2):159–66.

    Article  CAS  Google Scholar 

  15. Maskavs M, Kalnins M, Reihmane S, Laka M, Chernyavskaya S. Effect of water sorption of some mechanical parameters of composite systems based on low-density polyethylene and microcrystalline cellulose. Mech Compos Mater. 1999;35(1):55–62.

    Article  CAS  Google Scholar 

  16. Liang H, Xie F, Chen B, Guo F, Jin Z, Luo F. Miscibility and melting behavior of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends. J Appl Polym Sci. 2007;107(1):431–7.

    Article  Google Scholar 

  17. Liang H, Xie F, Guo F, Chen B, Luo F, Jin Z. Non-isothermal crystallization behavior of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends. Polym Bull. 2008;60:115–27.

    Article  CAS  Google Scholar 

  18. Wei G, Wang L, Chen G, Gu L. Synthesis and characterization of poly (ethylene-co-trimethylene terephthalates). J Appl Polym Sci. 2005;100(2):1511–21.

    Article  Google Scholar 

  19. Son TW, Kim KI, Kim NH, Jeong MG, Kim YH. Thermal properties of poly(trimethylene terephthalate)/poly(ethylene terephthalate) melt blends. Fiber Polym. 2003;4(1):20–6.

    Article  CAS  Google Scholar 

  20. Chen X, Yang K, Gong H, Chen Y, Dong Y, Liao Z. Crystallization behavior and crystal structure of poly(ethylene-co-trimethylene terephthalates). J Appl Polym Sci. 2007;105(5):3069–76.

    Article  CAS  Google Scholar 

  21. Ge Q, Ding X, Wu G, Liang S, Wu S. Study on the microstructure and mechanical properties of PET and PET/PTT Blends. Key Eng Mater. 2007;340–341:1085–90.

    Article  Google Scholar 

  22. Azizi Samir MAS, Alloin F, Sanchez J-Y, Dufresne A. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer. 2004;45(12):4149–57.

    Article  CAS  Google Scholar 

  23. Morin A, Dufresne A. Nanocomposites of chitin whiskers from riftia tubes and poly(caprolactone). Macromolecules. 2002;35(6):2190–9.

    Article  CAS  Google Scholar 

  24. Seydibeyoglu MO, Oksman K. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol. 2008;68:908–14.

    Article  Google Scholar 

  25. Perkin Elmer, Thermal Anlaysis, Application Note. Waltham, MA: Perkin Elmer Inc.

Download references

Acknowledgements

The Republic of Turkey, Ministry of National Education is greatly acknowledged for support of the scholarship of the researcher Alper Kiziltas to do this study at the University of Maine. The authors thank Chris West for the sample preparation. The authors would also like to thank Maine Agricultural and Forest Experiment Station (MAFES) project ME09615-08MS and the Wood Utilization Research Hatch 2007–2008 project. This is the 3069th paper of the Maine Agricultural and Forest Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Kiziltas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiziltas, A., Gardner, D.J., Han, Y. et al. Thermal properties of microcrystalline cellulose-filled PET–PTT blend polymer composites. J Therm Anal Calorim 103, 163–170 (2011). https://doi.org/10.1007/s10973-010-0894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0894-6

Keywords

Navigation