Skip to main content
Log in

Structural, thermal, and electrical properties of carbonaceous films containing palladium nanocrystals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carbonaceous films containing Pd nanocrystals can be applied as active layers in gas sensor applications. In this article we show results of studies of C-Pd films, obtained with two different methods: (1) physical and (2) physical + chemical deposition. First type of film prepared by physical vapor deposition (PVD) process was composed of fullerenes, amorphous carbon, and palladium nanograins. In the second method PVD film was modified in chemical vapor deposition (CVD) process forming a foam-like structure. Both types of films were studied by SEM, TEM, TGA, and electrical characterization (measurement of resistivity versus composition of gaseous hydrocarbons mixture).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sinha N, Ma J, Yeow JTW. Carbon nanotube based sensor. J Nanosci Nanotechnol. 2006;6(3):573–90.

    Article  CAS  Google Scholar 

  2. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, et al. Nanotube molecular wires as chemical sensors. Science. 2000;287:622–5.

    Article  CAS  Google Scholar 

  3. Zhao J, Buldum A, Han J, Lu JP. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology. 2002;13:195–200.

    Article  CAS  Google Scholar 

  4. Penza M, Antolini F, Vittori MA. Carbon nanotubes as SAW chemical sensors materials. J Sens Actuators B. 2004;100:47–59.

    Article  Google Scholar 

  5. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters. 2003;3(7):929–33.

    Article  CAS  Google Scholar 

  6. Lu Y, Li J, Han J, Ng H-T, Binder C, Partridge C, Meyyappan M. Room temperature methane detection using palladium loaded singlewalled carbon nanotube sensors. Chem Phys Lett. 2004;391:344–8.

    Article  CAS  Google Scholar 

  7. Young P, Lu Y, Terrill R, Li J. High sensitivity NO2 detection with carbon nanotubes - gold nanoparticle composite films. J Nanosci Nanotechnol. 2005;5(9):1509–12.

    Article  CAS  Google Scholar 

  8. Rode AV, Hyde ST, Gamaly EG, et al. Structural analysis of a carbon foam formed by a high pulse-rate laser ablation. Appl Phys A. 1999;69:S755–9.

    Article  CAS  Google Scholar 

  9. Chen Ch, Kennel EB, Stiller AH, et al. Carbon foam derived from various precursors. Carbon. 2006;44:1535–43.

    Article  CAS  Google Scholar 

  10. Ford WD: US Patent 3121050. 1964.

  11. Googin J, Napier J, Scrivner M: US Patent 3345440. 1967.

  12. Inagaki M, Morishita T, Kuno A, et al. Carbon foams prepared from polyimide using urethane foam template. Carbon. 2004;42:497–502.

    Article  CAS  Google Scholar 

  13. Ying JY, Garcia-Martinez J, Lancaster TM: US Patent Pub. No. WO/2005/102964. 2005.

  14. Rode AV, Elliman RG, Gamaly EG, et al. Electronic and magnetic properties of carbon nanofoam produced by high-repetitionrate laser ablation. Appl Surf Sci. 2002;197–198:644–9.

    Article  Google Scholar 

  15. Gjurova K, Troev K, Bechev Chr, Borisov G. Thermal behavior of rigid polyurethane foams. J Therm Anal. 1986;31:853–9.

    Article  CAS  Google Scholar 

  16. Gjurova K, Troev K, Bechev Chr, Borisov G. A study of rigid polyurethane foam containing reactive antypirenes. J Therm Anal. 1987;32:97–105.

    Article  Google Scholar 

  17. Hakateyama H, Kosugi R, Hatakeyama T. Thermal properties of lignin-and molasses-based polyurethane foams. J Therm Anal Cal. 2008;92:419–24.

    Article  Google Scholar 

  18. Czerwosz E, Kowalska E, Wronka H, Radomska J: Patent notification nr P384 591. 2008.

  19. Czerwosz E, Diduszko R, Dłużewski P, et al. Properties of Pd nanocrystals prepared by PVD method. Vacuum. 2008;82:372–6.

    Article  Google Scholar 

  20. Gallagher PK, Gross ME. The thermal decomposition of palladium acetate, J Therm Anal. 1986;31:1231–41.

    Google Scholar 

  21. Fang PH. Diffusion mechanism of fullerene extraction from soot. Materials Research Innovations. 2000;4:1:60–3.

    Google Scholar 

  22. Hydrogen Sensor, Fast, Sensitive, Reliable and Inexpensive to Produce, 2006 Argonne National Laboratory, http://www.anl.gov/techtransfer/pdf/Profile_HydrogenSensor9_06.pdf.

  23. Luongo K, Sine A, Bhansali S. Development of a highly sensitive porous Si based hydrogen sensor using Pd nano-structures. Sens Actuators B. 2005;111–112:125–9.

    Article  Google Scholar 

Download references

Acknowledgements

This research was co-financed by the European Regional Development Fund within the Innovative Economy Operational Programme 2007-2013 (“Development of technology for a new generation of the hydrogen and hydrogen compounds sensor for applications in above normative conditions”, No UDA-POIG.01.03.01-14-071/08-00) No UDA-POIG.01.03.01-14-071/08-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kowalska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalska, E., Czerwosz, E., Kozłowski, M. et al. Structural, thermal, and electrical properties of carbonaceous films containing palladium nanocrystals. J Therm Anal Calorim 101, 737–742 (2010). https://doi.org/10.1007/s10973-010-0869-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0869-7

Keywords

Navigation