Skip to main content
Log in

Preparation and Characterization of Different Concentrations of Palladium-Loaded Graphitic Carbon Nitride-Based Nanocomposites as an Efficient Hydrogen Gas Sensor at Room Temperature

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports the deposition of Pd/g-C3N4-based thin films at different percentages of Pd loading (10%, 20%, and 40%) on an Astro-glass substrate in a temperature range of 350–400°C, using a simplistic nebulizer-based ultrasonic spray pyrolysis technique. A mist of the precursor solution was produced utilizing a nebulizer. Dry airflow was used to transfer the formed mist on the thermally activated substrate, which allows deposition. The crystallinity and morphology of the deposited film were confirmed by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) and energy-dispersive x-ray spectroscopy (EDS) were performed to identify the chemical characteristics of the deposited film. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were performed to examine the thermal stability of the film. The surface area of the deposited film was analyzed using Brunauer–Emmett–Teller (BET) theory and the electrochemical route by Cu underpotential deposition (Cu-UPD). Response time for the 10% Pd/g-C3N4 film was beyond the measurable limit due to the high resistance of the film, whereas 40% Pd/g-C3N4 and 20% Pd/g-C3N4 showed response and recovery which is discussed in the results section. The sensitivity of the 20% Pd/g-C3N4 was found to be highest amongst all different loaded composites. These films were used for efficient hydrogen gas sensing at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2012). https://doi.org/10.1021/ja308249k.

    Article  CAS  Google Scholar 

  2. S. Cao, J. Low, J. Yu, and M. Jaroniec, polymeric photocatalysts based on graphitic carbon nitride. ADV. Mater. 27, 2150–2176 (2015). https://doi.org/10.1002/adma.201500033.

    Article  CAS  Google Scholar 

  3. S. Luo, Q. Zhou, W. Xue, and N. Liao, Effect of Pt doping on sensing performance of g-C3N4 for detecting hydrogen gas: a DFT study. Vacuum 200, 111014 (2022).

    Article  CAS  Google Scholar 

  4. J. Tong, L. Zhang, F. Li, M. Li, and S. Cao, An efficient top-down approach for the fabrication of large-aspect-ratio g-C3N4 nanosheets with enhanced photocatalytic activities. Phys. Chem. Chem. Phys. 17, 23532–23537 (2015). https://doi.org/10.1039/c5cp04057d.

    Article  CAS  Google Scholar 

  5. L. Zhou, Y. Xu, W. Yu, X. Guo, S. Yu, J. Zhang, and C. Li, Ultrathin Two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells. Journal of Materials Chemistry A. 4, 8000–8004 (2016). https://doi.org/10.1039/c6ta01894g.

    Article  CAS  Google Scholar 

  6. A. Kumar, Y. Zhao, M.M. Mohammadi, J. Liu, T. Thundat, and M.T. Swihart, Palladium nanosheet-based dual gas sensors for sensitive room-temperature hydrogen and carbon monoxide detection. ACS sensors 7, 225–234 (2022).

    Article  CAS  Google Scholar 

  7. T. Bhowmik, M. K. Kundu, and Sudip Barman, Palladium nanoparticle–graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of ph and correlation of its catalytic activity with measured hydrogen binding Energy. Acs Catalysis (2016). https://doi.org/10.1021/acscatal.5b02485.

    Article  Google Scholar 

  8. Arpita Ghosh, Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell. Appl Energy. 208, 37–48 (2017). https://doi.org/10.1016/j.apenergy.2017.10.022.

    Article  CAS  Google Scholar 

  9. S. Keshipour, and K. Adak, Pd(0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics. RSC Advances 6, 89407–89412 (2016). https://doi.org/10.1039/C6RA19668C.

    Article  CAS  Google Scholar 

  10. S. Raghu, P.N. Santhosh, and S. Ramaprabhu, Nanostructured palladium modified graphitic carbon nitride – High performance room temperature hydrogen sensor. Inter.J. Hydrogen Energy 41, 20779–20786 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.002.

    Article  CAS  Google Scholar 

  11. A. Mirzaei, H.R. Yousefi, F. Falsafi, M. Bonyani, J.-H. Lee, J.-H. Kim, and S.S. Kim, An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrogen Energy 44, 20552–20571 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.180.

    Article  CAS  Google Scholar 

  12. Y. Luo, C. Zhang, B. Zheng, X. Geng, and M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrogen Energy 42, 20386–20397 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.066.

    Article  CAS  Google Scholar 

  13. V. Singh, S. Dhall, A. Kaushal, and B.R. Mehta, Room temperature response and enhanced hydrogen sensing in size selected pd-c core-shell nanoparticles: role of carbon shell and Pd-C Interface. Int. J. Hydrogen Energy 43, 1025–1033 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.143.

    Article  CAS  Google Scholar 

  14. S. Walia, K.D.M. Ritu Gupta, G.U. Rao, and Kulkarni., Transparent Pd wire network-based areal hydrogen sensor with inherent joule heater. ACS Appl. Mater. Interfaces. 8, 23419–23424 (2016). https://doi.org/10.1021/acsami.6b08275.

    Article  CAS  Google Scholar 

  15. A. Ollagnier, A. Fabre, T. Thundat, and E. Finot, Activation process of reversible Pd thin film hydrogen sensors. Sens. Actuators, B Chem. 186, 258–262 (2013). https://doi.org/10.1016/j.snb.2013.05.041.

    Article  CAS  Google Scholar 

  16. L. Sun, M. Chen, X. Peng, Bo. Xie, and M. Han, The effects of Ni contents on hydrogen sensing response of closely spaced Pd–Ni alloy nanoparticle films. Int. J. Hydrogen Energy 41, 1341–1347 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.117.

    Article  CAS  Google Scholar 

  17. C. Lueng, P.J. Metaxas, M. Sushruth, and M. Kostylev, Adjustable sensitivity for hydrogen gas sensing Using perpendicular-to-plane ferromagnetic resonance in Pd/Co bi-layer films. Int. J. Hydrogen Energy 42, 3407–3414 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.204.

    Article  CAS  Google Scholar 

  18. A. Iftekhar Uddin, U. Yaqoob, K. Hassan, and G-Sang. Chung, Effects of Pt shell thickness on self-assembly monolayer Pd@Pt core-shell nanocrystals based hydrogen sensing. Inter. J. Hydrogen Energy 41, 15399–15410 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.138.

    Article  CAS  Google Scholar 

  19. G. Li, Y. Fan, Q. Hu, D. Zhang, Z. Ma, Z. Cheng, and J. Xu, Morphology and size effect of Pd nanocrystals on formaldehyde and hydrogen sensing performance of SnO2 based gas sensor. J. Alloy. Compd. 906, 163765 (2022).

    Article  CAS  Google Scholar 

  20. A. Wang, C. Wang, Fu. Li, W. Wong-Ng, and Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-micro letters 9, 47 (2017). https://doi.org/10.1007/s40820-017-0148-2.

    Article  CAS  Google Scholar 

  21. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317.

    Article  CAS  Google Scholar 

  22. Y. Dong, Q. Wang, Wu. Haishan, Y. Chen, Lu. Chun-Hua, Y. Chi, and H.-H. Yang, Graphitic carbon nitride materials: sensing, imaging and therapy. Small 12, 5376–5393 (2016). https://doi.org/10.1002/smll.201602056.

    Article  CAS  Google Scholar 

  23. J. Liu, H. Wang, and M. Antonietti, Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chem. Soc. Rev. 45, 2308–2326 (2016). https://doi.org/10.1039/c5cs00767d.

    Article  CAS  Google Scholar 

  24. G. Xin, and Y. Meng, Pyrolysis synthesized g-c3n4for photocatalytic degradation of methylene blue. J. Chem. 2013, 1–5 (2013). https://doi.org/10.1155/2013/187912.

    Article  CAS  Google Scholar 

  25. X. Wang, S. Blechert, and M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catalysis 2, 1596–1606 (2012). https://doi.org/10.1021/cs300240x.

    Article  CAS  Google Scholar 

  26. H. Zhang, X. Zuo, H. Tang, G. Li, and Z. Zhou, Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations. Phys. Chem. Chem. Phys. 17, 6280–6288 (2015). https://doi.org/10.1039/C4CP05288A.

    Article  CAS  Google Scholar 

  27. S. Krishnaswamy, P. Panigrahi, A. Raja, and G.S. Nagarajan, Structural and optical property of graphitic carbon nitride thin film using polyvinyl alcohol. Intern. J. Techn. Res. Appl. 38, 61–64 (2016).

    Google Scholar 

  28. S. Raghu, P.N. Santhosh, and S. Ramaprabhu, Nanostructured palladium modified graphitic carbon nitride – high performance room temperature hydrogen sensor. Inter. J. Hydrogen Energy 41, 20779–20786 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.002.

    Article  CAS  Google Scholar 

  29. Q.H. Liang, Z. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, and Holey, Graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25, 6885–6892 (2015). https://doi.org/10.1002/adfm.201503221.

    Article  CAS  Google Scholar 

  30. J. Hong, S. Yin, Y. Pan, J. Han, T. Zhou, and Xu. Rong, Porous carbon nitride nanosheets for enhanced photocatalytic activities. Nanoscale 6, 14984–14990 (2014). https://doi.org/10.1039/C4NR05341A.

    Article  CAS  Google Scholar 

  31. J. Xiao, Y. Xie, F. Nawaz, Y. Wang, P. Du, and H. Cao, Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl. Catal. B 183, 417–425 (2016). https://doi.org/10.1016/j.apcatb.2015.11.010.

    Article  CAS  Google Scholar 

  32. W. Shan, Y. Hu, Z. Bai, M. Zheng, and C. Wei, In situ preparation of g-C3N4/bismuth-based oxide nano-composites with enhanced photocatalytic activity. Appl. Catal. B 188, 1–12 (2016). https://doi.org/10.1016/j.apcatb.2016.01.058.

    Article  CAS  Google Scholar 

  33. B.H. Long, J.L. Lin, and X.C. Wang, Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A 2, 2942–2951 (2014). https://doi.org/10.1039/c3ta14339b.

    Article  CAS  Google Scholar 

  34. S. Yuan, Q. Zhang, B. Xu, S. Liu, J. Wang, J. Xie, M. Zhang, and T. Ohno, A New precursor to synthesize g-C3N4 with superior visible light absorption for photocatalytic application. Catal. Sci. Technol. 7, 1826–1830 (2017). https://doi.org/10.1039/c7cy00213k.

    Article  CAS  Google Scholar 

  35. M. Girish, R. Sivakumar, C. Sanjeeviraja, and Y. Kuroki, A facile approach called nebulized spray pyrolysis to deposit MnS thin films: effect of solution concentration with EDTA on the physical properties. Optik - Inter J. Light Electron Optics 126, 2074–2079 (2015). https://doi.org/10.1016/j.ijleo.2015.05.072.

    Article  CAS  Google Scholar 

  36. X. Sun, L. Hao, L. Chen, X. Guo, C. Han, J. Chen, W. Jiao, R. Wang, and X. He, Spray deposition of colorimetric H2 Detector with Pd/MoO3 nanocomposites for rapid hydrogen leakage monitoring at room temperature. Appl. Surf. Sci. 599, 153878 (2022). https://doi.org/10.1016/j.apsusc.2022.153878.

    Article  CAS  Google Scholar 

  37. R. Mariappan, V. Ponnuswamy, P. Jayamurugan, R.N. Jayaprakash, and R. Suresh, Structural, optical and electrical properties of thin films using nebulizer spray pyrolysis technique. Indian J. Mater. Sci. 2013, 1–8 (2013). https://doi.org/10.1155/2013/516812.

    Article  Google Scholar 

  38. J. Tamil Illakkiya, P. Usha Rajalakshmi, and Rachel Oommen, Nebulized spray pyrolysis: a new method for synthesis of graphene film and their characteristics. Surf. Coatings Technol. 307, 65–72 (2016). https://doi.org/10.1016/j.surfcoat.2016.08.051.

    Article  CAS  Google Scholar 

  39. J. Raj Mohamed, C. Sanjeeviraja, and L. Amalraj, Effect of substrate temperature on nebulized spray pyrolysised In2S3 thin films. J. Mater. Sci.: Mater. Electron. 27, 4437–4446 (2016). https://doi.org/10.1007/s10854-016-4315-x.

    Article  CAS  Google Scholar 

  40. S. Huang, W. Luo, and Z. Zou, Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method. J. Physics D: Appl. Phys. 46, 235108 (2013). https://doi.org/10.1088/0022-3727/46/23/235108.

    Article  CAS  Google Scholar 

  41. Fu. Xiaorong, Wu. Guangming, Shigeng Song, Zhitang Song, Xinzhong Duo, and Chenglu Lin, Preparation and characterization of MgO thin films by a simple nebulized spray pyrolysis technique. Appl. Surf. Sci. 148, 223–228 (1999). https://doi.org/10.1016/S0169-4332(99)00126-9.

    Article  Google Scholar 

  42. S.-Y. Wang, and Du. You-Wei, Preparation of nanocrystalline bismuth sulfide Thin films by asynchronous-pulse ultrasonic spray pyrolysis technique. Journal of Crystal Growth 236, 627–634 (2002). https://doi.org/10.1016/S0022-0248(02)00846-1.

    Article  CAS  Google Scholar 

  43. A. Ortiz, J.C. Alonso, E. Andrade, and C. Urbiola, Structural and optical characteristics of gallium oxide thin films deposited by ultrasonic Spray pyrolysis. J. Electrochem. Soc. 148, F26–F29 (2001). https://doi.org/10.1149/1.1342183.

    Article  CAS  Google Scholar 

  44. S.-Y. Wang, and Lu. Zu-Hong, Preparation of Y2O3 thin films deposited by Pulse ultrasonic spray pyrolysis. Mater. Chem. Phys. 78, 542–545 (2003). https://doi.org/10.1016/S0254-0584(02)00350-4.

    Article  CAS  Google Scholar 

  45. Lin Liu, Gap-Yong. Kim, and Abhijit Chandra, Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis. J. Power Source. 195, 7046–7053 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.083.

    Article  CAS  Google Scholar 

  46. X. Zhang, X. M. Li, T. L. Chen, J. M. Bian, and C. Y. Zhang, Structural and optical properties of Zn1-xMgxO thin films deposited by ultrasonic spray pyrolysis. Thin Solid Films 492, 248–252 (2005). https://doi.org/10.1016/j.tsf.2005.06.088.

    Article  CAS  Google Scholar 

  47. P. Singh, A. Kaushal, and D. Kaur, Mn-doped ZnO nanocrystalline thin films prepared by ultrasonic spray pyrolysis. J. Alloy. Compd. 471, 11–15 (2009). https://doi.org/10.1016/j.jallcom.2008.03.123.

    Article  CAS  Google Scholar 

  48. D. Walsh, L. Arcelli, V. Swinerd, J. Fletcher, S. Mann, and B. Palazzo, Aerosol-mediated fabrication of porous thin films using ultrasonic nebulization. Chem. Mater. 19, 503–508 (2007). https://doi.org/10.1021/cm0621951.

    Article  CAS  Google Scholar 

  49. Shengyue Wang, Wei Wang, Wenzhong Wang, Zheng Jiao, Jinhuai Liu, and Yitai Qian, Characterization and gas-sensing properties of nanocrystalline iron(III) oxide films prepared by ultrasonic spray pyrolysis on silicon. Sensor. Actuators B: Chem. 69, 22–27 (2000). https://doi.org/10.1016/S0925-4005(00)00304-X.

    Article  CAS  Google Scholar 

  50. Jiming Bian, Xiaomin Li, Lidong Chen, and Qin Yao, Properties of undoped n-type ZnO Film and N–in codoped p-type ZnO film deposited by ultrasonic spray Pyrolysis. Chem. Phys. Lett. 393, 256–259 (2004). https://doi.org/10.1016/j.cplett.2004.06.044.

    Article  CAS  Google Scholar 

  51. Kamble, Vinayak B., and Arun M. Umarji (2012) Chromium oxide thin films by ultrasonic nebulized spray pyrolysis of aqueous combustion mixture for gas sensing application." Physics and Technology of Sensors (ISPTS), 1st International Symposium on. IEEE, https://doi.org/10.1109/ispts.2012.6260915

  52. E.E. Ebenso, M. Kripasindhu Sardar, A.R. Chandrasekhar, and C.N.R. Rao. Raju, Thin films of Ln1−xSrxCoO3 (Ln=La, Nd and Gd) and SrRuO3 by nebulized spray pyrolysis. Solid State Sci. 2, 833–839 (2000). https://doi.org/10.1016/S1293-2558(00)01098-0.

    Article  CAS  Google Scholar 

  53. M. Selim, M.C. Soliman, and A. R. Sekhar Raju, Preparation and characterization of thin films of ZnO: Al by nebulized spray pyrolysis. Appl. Phys. A 78, 1215–1218 (2004).

    Article  CAS  Google Scholar 

  54. A. Baltakesmez, C. Aykaç, and B. Güzeldir, Phase transition and changing properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique, as a function of tungsten dopant. Appl. Phys. A 125, 441 (2019).

    Article  Google Scholar 

  55. M. Mousavi, Gh.H. Khorrami, A. Kompany, and Sh. Tabatabai Yazdi, Structural, optical and electrochemical properties of f-doped vanadium oxide transparent semiconducting thin films. Appl. Phys. A 123, 755 (2017).

    Article  CAS  Google Scholar 

  56. A. Bouich, Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application. Appl. Phys. A 125, 579 (2019).

    Article  CAS  Google Scholar 

  57. A. Ibrahim, U.B. Memon, S.P. Duttagupta, I. Mahesh, R.K.S. Raman, A. Sarkar, and S.S.V. Tatiparti, Nano-structured palladium impregnate graphitic carbon nitride composite for efficient hydrogen gas sensing. Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.04.140.

    Article  Google Scholar 

  58. A. Ibrahim, U.B. Memon, S.P. Duttagupta, R.K. Singh Raman, A. Sarkar, G. Pendharkar, and S.S.V. Tatiparti, Hydrogen gas sensing of nano-confined Pt/g-C3N4 composite at room temperature. Int. J. Hydrogen Energy 46, 23962–23973 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.147.

    Article  CAS  Google Scholar 

  59. Jincheng Tong, Li. Zhang, Fei Li, Mingming Li, and Shaokui Cao, An efficient top-down approach for the fabrication of large-aspect-ratio g-C3N4 nanosheets with enhanced photocatalytic activities. Phys. Chem. Chem. Phys. 17, 23532–23537 (2015). https://doi.org/10.1039/C5CP04057D.

    Article  CAS  Google Scholar 

  60. Zohra Ferhat-Hamida, Jacques Barbier, Sandrine Labruquere, and Daniel Duprez, The chemical state of palladium in alkene and acetylene oxidation. Applied Catalysis B: Envirn. 29, 195–205 (2001). https://doi.org/10.1016/S0926-3373(00)00203-4.

    Article  CAS  Google Scholar 

  61. Y. Ning, Z. Yang, and H. Zhao, Platinum recovery by palladium alloy catchment gauzes In nitric acid plants. Platin. Met. Rev. 40, 80–87 (1996).

    CAS  Google Scholar 

  62. T. Akamatsu, T. Itoh, N. Izu, W. Shin, and K. Sato, Sensing properties of Pd-loaded Co3O4 film for a ppb-Level No gas sensor. Sensors 15, 8109–8120 (2015). https://doi.org/10.3390/s150408109.

    Article  CAS  Google Scholar 

  63. Alexandre Baylet, Patrice Marécot, Daniel Duprez, Paola Castellazzi, Gianpiero Groppi, and Pio Forzatti, In situ raman and in situ XRD analysis of PdO reduction and Pd° oxidation supported on γ-Al2O3 catalyst under different atmospheres. Physic. Chem. Chem. Phys. 13, 4607 (2011). https://doi.org/10.1039/c0cp01331e.

    Article  CAS  Google Scholar 

  64. G. Quan, Y. Liao, L. Yin, J. Long, X. Wang, and C. Xue, Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability. Appl. Catalysis B: Environ. 165, 503–510 (2015). https://doi.org/10.1016/j.apcatb.2014.10.045.

    Article  CAS  Google Scholar 

  65. A. Pullamsetty, M. Subbiah, and R. Sundara, Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells. Inter. J. Hydrogen Energy 40, 10251–10261 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.020.

    Article  CAS  Google Scholar 

  66. Q. Lin, Li. Li, S. Liang, M. Liu, J. Bi, and W. Ling, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl. Catal. B: Environ. 163, 135–142 (2015). https://doi.org/10.1016/j.apcatb.2014.07.053.

    Article  CAS  Google Scholar 

  67. J. Zhang, M. Zhang, G. Zhang, and X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catalysis 2, 940–948 (2012). https://doi.org/10.1021/cs300167b.

    Article  CAS  Google Scholar 

  68. J. Zhang, M. Zhang, C. Yang, and X. Wang, Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 26, 4121–4126 (2014). https://doi.org/10.1002/adma.201400573.

    Article  CAS  Google Scholar 

  69. Wagner, C. D.; Muilenberg, G. E. Handbook of x-rayphotoelectron spectroscopy: a reference book of standard data for use inx-ray photoelectron spectroscopy; Physical Electronics Division, Perkin-Elmer Corp.: Waltham, MA, 1979.

  70. D. Das, D. Banerjee, D. Pahari, U.K. Ghorai, S. Sarkar, N.S. Das, and K.K. Chattopadhyay, Defect induced tuning of photoluminescence property in graphitic carbon nitride nanosheets through synthesis conditions. Journal of Luminescence 185, 155–165 (2017). https://doi.org/10.1016/j.jlumin.2017.01.007.

    Article  CAS  Google Scholar 

  71. S.C. Yan, Z.S. Li, and Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397–10401 (2009). https://doi.org/10.1021/la900923z.

    Article  CAS  Google Scholar 

  72. S. Raghu, B.P. Vinayan, B. Mridula, P.N.N. Santhosh, and S. Ramaprabhu, Platinum and platinumeiron alloy nanoparticles dispersed nitrogen-doped graphene as high-performance room temperature hydrogen sensor. Int. J. Hydrogen Energy 40, 1034 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.018.

    Article  CAS  Google Scholar 

  73. L. De Luca, A. Donato, S. Santangelo, G. Faggio, G. Messina, N. Donato, and G. Neri, Hydrogen sensing characteristics of Pt/TiO2 /MWCNTs composites. Inter. J. Hydrogen Energy 37, 1842–1851 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by IITB-Monash Research Academy, India (IMURA 0468 (A)). The authors would also like to thank the Indian Institute of Technology Bombay, India, and Monash University, Australia, for supporting this work. Also, the author would like to thank SAIF and the Central Facility at IIT Bombay for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A., Memon, U.B., Duttagupta, S.P. et al. Preparation and Characterization of Different Concentrations of Palladium-Loaded Graphitic Carbon Nitride-Based Nanocomposites as an Efficient Hydrogen Gas Sensor at Room Temperature. J. Electron. Mater. 52, 446–462 (2023). https://doi.org/10.1007/s11664-022-10011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10011-3

Keywords

Navigation