Skip to main content
Log in

Studies on the equilibrated thermodesorption of n-hexane from ZSM-5 zeolite

The influence of the extraframework cations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Equilibrated thermodesorption (TPED) and quasi-equilibrated temperature programmed desorption and adsorption (QE-TPDA) were employed as methods for studying the influence of different extraframework cations (Na+, K+, Li+, Cu2+, Zn2+, or Mg2+) on adsorption of n-hexane on ZSM-5 zeolite with high Al content (Si/Al = 15). Considerable influence of the cations on both initial adsorption in the micropores and ordering of the adsorbed molecules, occurring at high coverages, has been observed. This influence is reflected by the values of the adsorption enthalpy and entropy, determined by fitting the dual site Langmuir (DSL) adsorption function to the equilibrated thermodesorption profiles. However, no clear correlation between the determined parameters and properties of the extraframework cations could be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maesen T. The zeolite scene—an overview. In: Cejka J. et al. editors. Introduction to zeolites science and practice. Stud. Surf. Sci. Catal. 168. Amsterdam: Elsevier: 2007; pp. 1–12.

  2. Sirkar KK. Membrane separation technologies: current developments. Chem Eng Commun. 1997;157:145–84.

    Article  CAS  Google Scholar 

  3. Bates SP, van Santen RA. The molecular basis of zeolite catalysis: a review of theoretical simulations. Adv Catal. 1998;42:1–114.

    Article  CAS  Google Scholar 

  4. Newalkar BL, Choudary NV, Turaga TU, Vijayalakshmi RP, Kumar P, Komarneni BLS, Bhat TSG. Potential adsorbent for light hydrocarbon separation: role of SBA-15 framework porosity. Chem Mater. 2003;15:1474–9.

    Article  CAS  Google Scholar 

  5. Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev. 1995;95:559–614.

    Article  CAS  Google Scholar 

  6. Clark LA, Snurr RQ. Adsorption isotherm sensitivity to small changes in zeolite structure Chem. Phys Lett. 1999;308:155–9.

    CAS  Google Scholar 

  7. Rees LVC, Shen D. Adsorption of gases in zeolite molecular sieves. In: H. van Bekkum, et al. editors. Introduction to zeolites science and practice, Stud Surf Sci Catal 137. Amsterdam: Elsevier; 2001. p. 579.

  8. Mittelmeijer-Hazeleger MC, Ferreira AFP, Bliek A. Influence of helium and argon on the adsorption of alkanes in zeolites. Langmuir. 2002;18:9613–6.

    Article  CAS  Google Scholar 

  9. Gribov EN, Sastre G, Corma A. Influence of pore dimension and sorption configuration on the heat of sorption of hexane on monodimensional siliceous zeolites. J Phys Chem B. 2005;109:23794–803.

    Article  CAS  Google Scholar 

  10. Haag WO. Catalysis by zeolites—science and technology. Stud Surf Sci Catal. 1994;84:1375–94.

    Article  CAS  Google Scholar 

  11. Kokotailo GT, Lawton SL, Olson DH, Meier WM. Structure of synthetic zeolite ZSM-5. Nature. 1978;272:437–8.

    Article  CAS  Google Scholar 

  12. Eder F, Lercher AJ. Alkane sorption in molecular sieves: the contribution of ordering, intermolecular interactions, and sorption on Brønsted acid sites. Zeolites. 1997;18:75–81.

    Article  CAS  Google Scholar 

  13. Jacobs PA, Beyer HK, Valyon J. Properties of the end members in the Pentasil-family of zeolites: characterization as adsorbents. Zeolites. 1981;1:161–8.

    Article  CAS  Google Scholar 

  14. Olson DH. Structure-related paraffin sorption in ZSM-5. Zeolites. 1996;17:434–6.

    Article  CAS  Google Scholar 

  15. Richards RE, Rees LVC. Sorption and packing of n-alkane molecules in ZSM-5. Langmuir. 1987;3:335–40.

    Article  CAS  Google Scholar 

  16. Eder F, Stockenhuber M, Lercher JA. Brønsted acid site and pore controlled siting of alkane sorption in acidic molecular sieves. J Phys Chem B. 1997;101:5414–9.

    Article  CAS  Google Scholar 

  17. Dondur V, Rakić V, Damjanović L, Hercigonja R, Auroux A. Temperature-programmed desorption of n-hexane from hydrated HZSM-5 and NH4ZSM-5 zeolites. J Therm Anal Calorim. 2006;84:233–8.

    Article  CAS  Google Scholar 

  18. Rac V, Rakić V, Gajinov S, Dondur V, Auroux A. Room-temperature interaction of n-hexane with ZSM-5 zeolites. J Therm Anal Calorim. 2006;84:239–45.

    Article  CAS  Google Scholar 

  19. Millot B, Methivier A, Jobic H. Adsorption of n-alkanes on salicylate crystals. A temperature-programmed desorption study. J Phys Chem. 1998;102:3210–5.

    CAS  Google Scholar 

  20. Millot B, Methivier A, Jobic H, Clemencon I, Rebours B. Adsorption of branched alkanes in silicalite-1: a temperature-programmed-equilibration study. Langmuir. 1999;15:2534–9.

    Article  CAS  Google Scholar 

  21. Smit B, Maesen TLM. Commensurate ‘freezing’ of alkanes in the channels of a zeolite. Nature. 1995;374:42–4.

    CAS  Google Scholar 

  22. Krishna R, Calero S, Smit B. Investigation of entropy effects during sorption of mixtures of alkanes in MFI zeolite. Chem Eng J. 2002;88:81–94.

    Article  CAS  Google Scholar 

  23. Makowski W, Majda D. Temperature-programmed equilibrated desorption of n-hexane as a tool for characterization of the microporous structure of zeolites. Thermochim Acta. 2004;412:131–7.

    Article  CAS  Google Scholar 

  24. Zhu W, Kapteijn F, Van der Linden B, Moulijn JA. Equilibrium adsorption of linear and branched C6 alkanes on silicalite-1 studied by the tapered element oscillating microbalance. Phys Chem Chem Phys 2001;3:1755–61.

    Google Scholar 

  25. Makowski W. Quasi-equilibrated temperature programmed desorption and adsorption: a new method for determination of the isosteric adsorption heat. Thermochim Acta. 2007;454:26–32.

    Article  CAS  Google Scholar 

  26. Makowski W, Gil B, Majda D. Characterization of acidity and porosity of aerolite catalysts by the equilibrated thermodesorption of n-hexane and n-nonane. Catal Lett. 2008;120:154–60.

    Article  CAS  Google Scholar 

  27. Majda D, Makowski W, Kawałek M. Proceedings of the XII Forum Zeolitowe (Ciążeń, Poland), 2006.

  28. NIST Chemistry WebBook, (www.webbook.nist.gov/chemistry).

  29. Makowski W, Ogorzałek Ł. Determination of the adsorption heat of n-hexane and n-heptane on zeolites Beta, L, 5A, 13X, Y and ZSM-5 by means of quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA). Thermochim Acta. 2007;465:30–9.

    Article  CAS  Google Scholar 

  30. Smiešková A, Rojasová E, Hudec P, Šabo L. Aromatization of light alkanes over ZSM-5 catalysts. Influence of the particle properties of the zeolite. Appl Catal A. 2004;268:235–40.

    Article  Google Scholar 

  31. Liu H, Kuehl GH, Halasz I, Olson DH. Quantifying the n-hexane cracking activity of Fe- and Al-based acid sites in H-ZSM-5. J Catal. 2003;218:155–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Polish Ministry of Science and Higher Education for financial support (grant number N507 108 32/3175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Majda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majda, D., Makowski, W. Studies on the equilibrated thermodesorption of n-hexane from ZSM-5 zeolite. J Therm Anal Calorim 101, 519–526 (2010). https://doi.org/10.1007/s10973-010-0832-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0832-7

Keywords

Navigation