Skip to main content
Log in

Phase equilibria in binary subsystems of urea–biuret–water system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Joint results of the differential scanning calorimetry (DSC) and thermogravimetry (TG) experiments were the basis for the fusion enthalpy and temperature determination of the biuret (NH2CO)2NH (synthesis by-product of the urea fertilizer (NH2)2CO). Recommended values are Δm H = (26.1 ± 0.5) kJ mol−1, T m = (473.8 ± 0.4) K. The DSC method allowed for the phase diagrams of “water–biuret,” “water–urea,” “urea–biuret” binary systems to be studied; as a result, liquidus and solidus curves were precisely defined. Stoichiometry and decomposition temperature of the biuret hydrate identified, composition of the compound in “urea–biuret” system was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kucheryavy VI, Lebedev VV. Sintez i primenenie karbamida. Leningrad: “Khimia”; 1970.

  2. Ruehrwein RA, Huffman HM. Thermal data. The heat capacity, entropy and free energy of urea. J Am Chem Soc. 1946;68(9):1759–61.

    Article  CAS  Google Scholar 

  3. Kozyro AA, Danilovich SV, Krasulin AP. Teploemkost’, entalpiya plavleniya i termodinamicheskie svoistva mocheviny. Zh Prikl Khim. 1986;59(7):1456–9.

    CAS  Google Scholar 

  4. Gambino M, Bros JP. Capacite calorifique de l’uree et de quelques melanges eutectiques a base d’uree entre 30 et 140 °C. Thermochim Acta. 1988;127:223–36.

    Article  CAS  Google Scholar 

  5. Andersson O, Matsuo T, Suga H, Ferloni P. Low-temperature heat capacity of urea. Int J Thermophys. 1993;14(1):149–58.

    Article  CAS  Google Scholar 

  6. Kabo GJ, Kozyro AA, Diky VV, Simirsky VV. Additivity of thermodynamic properties of organic compounds in crystalline state, heat capacities and enthalpies of phase transition of alkyl derivatives of urea in crystalline state. J Chem Eng Data. 1995;40:371–93.

    Article  CAS  Google Scholar 

  7. Ferloni P, Della Gatta G. Heat capacities of urea, N-methylurea, N-ethylurea, N-(n)propylurea, and N-(n)butylurea in the range 200 to 360 K. Thermochim Acta. 1995;266:203–12.

    Article  CAS  Google Scholar 

  8. Schmidt VA, Becker F. Die Bildungswarme von Nitrocellulofen, Nitroglycerin und anderen widuigen Beltandteilen von Treibmitteln. Z Gesamte Schiess Sprengstoffwes. 1933;33:280–2.

    Google Scholar 

  9. Huffman HM. Thermal data. XII. The heats of combustion of urea and guanidine carbonate and their standard free energies of formation. J Am Chem Soc. 1940;62(5):1009–11.

    Article  CAS  Google Scholar 

  10. Kabo GY, Miroshnichenko EA, Frenkel’ ML, Kozyro AA, Simirskii VV. Termokhimiya alkylproizvodnyh karbamida. Izv Akad Nauk SSSR Ser Khim. 1990;4:750–5.

    Google Scholar 

  11. Lide DR. CRC handbook of chemistry and physics. 83th ed. CNR Press; 2002.

  12. Langer HG, Brady TP. Thermal reactions by automated mass spectrometric thermal analysis. Thermochim Acta. 1973;5:391–402.

    Article  CAS  Google Scholar 

  13. Stradella L, Argentero M. A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochim Acta. 1993;219:315–23.

    Article  CAS  Google Scholar 

  14. Chen JP, Isa K. Thermal decomposition of urea and urea derivatives by simultaneous TG/(DTA)/MS. J Mass Spectrom Soc Jpn. 1998;46(4):299–303.

    Article  CAS  Google Scholar 

  15. Schaber PM, Colson J, Higgins S. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004;424:131–42.

    Article  CAS  Google Scholar 

  16. Siemion P. Solid state reactions of potato starch with urea and biuret. J Polym Environ. 2004;12(4):247–55.

    Article  CAS  Google Scholar 

  17. Carp O. Considerations on the thermal decomposition of urea. Rev Roum Chem. 2001;46(7):735–40.

    CAS  Google Scholar 

  18. Rollet A-P, Cohen-Adad R, Hackspill ML. Action de la chaleur sur les mélanges durée et de biuret. CR Acad Sci IIc Chim. 1949;18:199–201.

    Google Scholar 

  19. Rollet A-P, Cohen-Adad R. Le systeme eau-biuret. CR Acad Sci II C. 1951;2214–16.

  20. Ostrogovich G, Cipau R. Uber das verhalten des wasserfreinen biurets bei hohen drucken und uber sienen kristalldimorphismus. Tetrahedron. 1969;25:3123–9.

    Article  CAS  Google Scholar 

  21. Aida K. Infra-red absorption spectra and structure of biuret-hydrogen peroxide complexes. J Inorg Nucl Chem. 1962;25(2):165–70.

    Article  Google Scholar 

  22. Toyozo U, Katsunosuke M, Yutaka S. Infrared spectra of biuret-hydrate and its deuterated compound. Bull Chem Soc Jpn. 1969;42:1539–45.

    Article  Google Scholar 

  23. Speyers CL. Solubilities of some carbon compounds and densities of their solutions. Am J Sci. 1902;IV(14):293–302.

    Article  Google Scholar 

  24. Pinck LA, Kelly MA. The solubility of urea in water. J Am Chem Soc. 1925;47(8):2170–2.

    Article  CAS  Google Scholar 

  25. Shnidman L, Sunier AA. The solubility of urea in water. J Phys Chem. 1932;36(4):1232–40.

    Article  CAS  Google Scholar 

  26. Kakinuma H. Communication to the editor: the solubility of urea in water. J Phys Chem. 1941;45(6):1045–6.

    Article  CAS  Google Scholar 

  27. Frejacques M. Les base theoriques de la synthese industrielle de l’uree (theoretical basis of the industrial synthesis of urea). Chim et Ind. 1948;60(1):22–35.

    CAS  Google Scholar 

  28. Jänecke E. Über das system: H2O–CO2–NH3. Z Elektrochem. 1930;36(9):645–54.

    Google Scholar 

  29. Miller FW Jr, Dittmar HR. The solubility of urea in water the heat of fusion of urea. J Am Chem Soc. 1934;56(4):848–9.

    Article  CAS  Google Scholar 

  30. Zordan TA, Hurkot DG, Peterson M, Hepler LG. Enthalpies and entropies of melting from differential scanning calorimetry and freezing point depressions: urea, methylurea, 1, 1-dimethylurea, 1, 3-dimethylurea, tetramethylurea, and thiourea. Thermochim Acta. 1972;5(1):21–4.

    Article  CAS  Google Scholar 

  31. Vogel L, Schuberth H. Some physicochemical data of urea near the melting point. Chem Technol (Leipz). 1980;32:143–4.

    CAS  Google Scholar 

  32. Bros JP, Gambino M, Gaune-Escard M, Huu NT. Heat storage. Heats of fusion and heat capacity of urea-based mixtures. Calorim Anal Therm. 1983;14:92–5.

    CAS  Google Scholar 

  33. Ozawa T. Thermoanalytical investigation of latent heat thermal energy storage materials. Thermochim Acta. 1985;92:27–38.

    Article  CAS  Google Scholar 

  34. Della Gatta G, Ferro D, Barone G, Piacente V. Vapour pressures and sublimation enthalpies of urea and some of its derivatives. J Chem Thermodyn. 1987;19(9):915–23.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A.V. Babkin for his help in sample purification, A.F. Asachenko for NMR measurements, A.V. Dunaev for coupled TG–FTIR. This study was supported by URALCHEM OJSC. This study was performed at the User Facilities Center of Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babkina, T.S., Kuznetsov, A.V. Phase equilibria in binary subsystems of urea–biuret–water system. J Therm Anal Calorim 101, 33–40 (2010). https://doi.org/10.1007/s10973-010-0829-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0829-2

Keywords

Navigation