Skip to main content
Log in

Effects of reagents’ nature on mechanochemical synthesis of calcium titanate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Because of unique dielectric, piezoelectric, thermoelectric, optical and ferroelectric properties of titanates of alkaline earth metals, they have become an object of many scientific research. This article is concerned with mechanochemical synthesis of calcium titanate as an alternative technique to hydrothermal, sol–gel, thermal methods. The aim of this study was to verify the mechanochemical conditions of CaTiO3 formation with the use of three calcium oxide precursors—CaO, CaCO3 and Ca(OH)2. The differences in processes of calcium titanate synthesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kenndey BJ, Howard CJ, Chakoumakos BC. Phase transitions in perovskite at elevated temperatures—a powder neutron diffraction study. J Phys Condens Matter. 1999;11:1479–88.

    Article  Google Scholar 

  2. Manik SK, Pradhan SK. Microstructure characterization of ball milled prepared nanocrystalline perovskite CaTiO3 by Rietveld method. Mater Chem Phys. 2004;86:284–92.

    Article  CAS  Google Scholar 

  3. Cavalcate LS, Marques VS, Szczancoski JC, Escote MT, Joya MR, Varela JA, Santos MRMC, Pizani PS, Longo E. Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces. Chem Eng J. 2008;143:299–307.

    Article  Google Scholar 

  4. Yuk J, Troczyński T. Sol–gel BaTiO3 thin film for humidity sensors. Sens Actuators. 2003;B94:290–3.

    CAS  Google Scholar 

  5. Stojanovic BD, Simoes AZ, Paiva-Santos CO, Jovalekic C, Mitic VV, Varela JA. Mechanochemical synthesis of barium titanate. J Eur Ceram Soc. 2005;25:1985–9.

    Article  CAS  Google Scholar 

  6. Jancar B, Suvorov D, Valant M, Drazic G. Characterization of CaTiO3-NdAlO3 dielectric ceramics. J Eur Ceram Soc. 2003;23:1391–400.

    Article  CAS  Google Scholar 

  7. Shih SJ, Bishop C, Cockayne DJH. Distribution of Σ3 misorientations in polycrystalline strontium titanate. J Eur Ceram Soc. 2009;29:3023–9.

    Article  CAS  Google Scholar 

  8. Minh NQ. Ceramic fuel-cells. J Am Ceram Soc. 1993;76:563–88.

    Article  CAS  Google Scholar 

  9. Chang HY, Cheng SY, Sheu CI, Wang YH. Core-shell structure of strontium titanate self-grown by a hydrothermal process for use in grain boundary barrier layers. Nanotechnol. 2003;14:603–8.

    Article  CAS  Google Scholar 

  10. Hu Y, Tan OK, Cao W, Zhu W. A low temperature nano-structured SrTiO3 thick film oxygen gas sensor. Ceram Int. 2004;30:1819–22.

    Article  CAS  Google Scholar 

  11. Xu YL, Zhou XH, Sørensen OT. Oxygen sensors based on semiconducting metal oxides: an overview. Sens Actuators. 2000;B65:2–4.

    CAS  Google Scholar 

  12. Suvorov D, Drazic G, Valant M, Jancar B. Microstructural characterization of CaTiO3-NdAlO3 based ceramics. Korean J Cryst. 2000;11:195–9.

    Google Scholar 

  13. Kim JS, Cheon CI, Kang HJ, Lee CH, Kim KY, Nam S, Byun JD. Crystal structure and microwave dielectric properties of CaTiO3-(Li1/2Nd1/2)TiO3 ceramics. Jpn J Appl Phys. 1999;38:5633–7.

    Article  CAS  Google Scholar 

  14. Suvorov D, Vanat M, Jancar B, Skapin SD. CaTiO3-based ceramisc: microstructural development and dielectric properties. Acta Chim Slov. 2001;48:87–99.

    CAS  Google Scholar 

  15. Cho SY, Kim IT, Hong KS. Microwave dielectric properties and applications of rare-earth aluminates. J Mater Res. 1999;14(1):114–9.

    Article  CAS  Google Scholar 

  16. Shrivastava OP, Shrivastava R. Synthesis, characterization and leach rate study of polycrystalline calcium strontium titanate ceramic powder. Prog Cryst Growth Charact Mater. 2002;45(1–2):103–6.

    Article  CAS  Google Scholar 

  17. Yang ZZ, Yamada H, Miller GR. Synthesis and characterization of high-purity CaTiO3. Am Ceram Soc Bull. 1985;64(12):1550–4.

    CAS  Google Scholar 

  18. Evans JR, Howard JAK, Sterkovic T, Ristic MM. Variable temperature in situ X-ray diffraction study of mechanical activated synthesis of calcium titanate. Mater Res Bull. 2003;38:1203–13.

    Article  CAS  Google Scholar 

  19. Pfaff G. Synthesis of calcium titanate powders by sol-gel process. Chem Mater. 1994;6:58–62.

    Article  CAS  Google Scholar 

  20. Zhang X, Zhang J, Ren X, Wang XJ. The dependence of persistent phosphorescence on annealing temperatures in CaTiO3:Pr3+ nanoparticles prepared by a coprecipitation technique. J Solid State Chem. 2008;181:393–8.

    Article  CAS  Google Scholar 

  21. Muthuraman M, Patil KC, Senbagaraman S, Umarji AM. Sintering, microstructural and dilatometric studies of combustion synthesized synroc phases. Mater Res Bull. 1996;31:1375–81.

    Article  CAS  Google Scholar 

  22. Lee SJ, Kim YC, Hwang JH. An organic-inorganic solution technique for fabrication of nano-sized CaTiO3 powder. J Ceram Process Res. 2004;5:223–6.

    Google Scholar 

  23. Kutty TRN, Vivekanandan R, Murugaraj P. Precipitation of rutile and anatase (TiO2) fine powders and their conversion to MtiO3 (M = Ba, Sr, Ca) by the hydrothermal method. Mater Chem Phys. 1988;19:533–46.

    Article  CAS  Google Scholar 

  24. Ristic MM, Milosevic S. Mechanical Activation of Inorganic Materials. Monographs of SANU, Belgrade, 1998.

  25. Boldyrev VV. Mechanochemistry and mechanical activation. Mater Sci Forum. 1996;225–227:511–20.

    Article  Google Scholar 

  26. Mi G, Saito F, Suzuki S, Waseda Y. Formation of CaTiO3 by grinding from mixtures of CaO or Ca(OH)2 with anatase or rutile at room temperature. Powder Technol. 1998;97:178–82.

    Article  CAS  Google Scholar 

  27. Branković G, Vukotić V, Branković Z, Varela JA. Investigation on possibility of mechanochemical synthesis of CaTiO3 from different precursors. J Eur Ceram Soc. 2007;27:729–32.

    Article  Google Scholar 

  28. Mi G, Murakami Y, Shindo D, Saito F. Mechanochemical synthesis of CaTiO3 from a CaO–TiO2 mixture and its HR-TEM observation. Powder Technol. 1999;105:162–6.

    Article  CAS  Google Scholar 

  29. Berbenini V, Marini A. Mechanochemical activation of calcium titanate formation from CaCO3–TiO2 mixtures. J Mater Sci. 2004;39:5279–82.

    Article  Google Scholar 

  30. Jean M, Nachbaur V. Determination of milling parameters to obtain mechanosynthesized ZnFe2O4. J Alloy Compd. 2008;454:432–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Higher Education Ministry, (Poland) Project No C-1/DS/2009-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wieczorek-Ciurowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieczorek-Ciurowa, K., Dulian, P., Nosal, A. et al. Effects of reagents’ nature on mechanochemical synthesis of calcium titanate. J Therm Anal Calorim 101, 471–477 (2010). https://doi.org/10.1007/s10973-010-0802-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0802-0

Keywords

Navigation