Skip to main content
Log in

A study of transcrystallinity in polypropylene in the presence of wood irradiated with gamma rays

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interest in lignocellulosic composites has been growing in recent years because of their specific properties. In this study, a new technique of wood treatment using γ-irradiation was used. This research focuses on the influence of the gamma irradiation on the chemical composition of wood and on the nucleation ability of polypropylene matrice. The inner morphology of the transcrystalline layer was investigated using hot stage optical microscopy. Differential scanning calorimetry was used to investigate the kinetic parameters of polypropylene crystallization in the presence of wood surface. The results showed that the gamma irradiation can decrease the content of the cellulose in the wood, but it has a slightly negative effect on the transcrystallization process of polypropylene. This treatment also affects the crystal conversion and the half-time of PP crystallization. These results suggested that the gamma irradiation of wood may play a useful role in changing the microstructure of the matrice near the wood. It was observed that the nucleation of the wood surface was selective, indicating that the chemical characteristics of the lignocellulosics might have influence on the polypropylene crystallization. A possible mechanism for the appearance of transcrystallinity involving chemical composition of lignocellulosic is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bledzki AK, Letman M, Viksne A, Rence L. A comparison of compounding processes and wood type for wood fibre—PP composites. Composites A. 2005;36:789–97.

    Article  Google Scholar 

  2. Schirp A, Wolcott MP. Influence of fungal decay and moisture absorption on mechanical properties of extruded wood-plastic composites. Wood Fiber Sci. 2005;37:643–52.

    Google Scholar 

  3. Bouza R, Marco C, Martin Z, Gomez MA, Ellis G, Barral L. Dynamic crystallization of polypropylene and wood-based composites. J Appl Polym Sci. 2006;102:6028–36.

    Article  CAS  Google Scholar 

  4. Ng ZS, Simon LC, Elkamel A. Renewable agricultural fibres as reinforcing fillers in plastics. J Therm Anal Calorim. 2009;96:85–90.

    Article  CAS  Google Scholar 

  5. Danyadi L, Janecska T, Szabo Z, Nagy G, Moczo J, Pukanszky B. Wood flour filled PP composites: compatibilization and adhesion. Compos Sci Technol. 2007;67:2838–46.

    Article  CAS  Google Scholar 

  6. Maldas D, Kokta BV. Interfacial adhesion of lignocellulosic materials in polymer composites: an overview. Compos Interfaces. 1993;1:87–108.

    Article  CAS  Google Scholar 

  7. Kazayawoko M, Balatinecz JJ, Matuana LM. Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mater Sci. 1999;34:6189–99.

    Article  CAS  Google Scholar 

  8. Qin T, Huang L, Li G. Effect of chemical modification on the properties of wood/polypropylene composites. J For Res. 2005;16:241–4.

    Article  CAS  Google Scholar 

  9. Hill CAS. Wood modification: chemical, thermal and other processes. New York: Wiley; 2006.

    Book  Google Scholar 

  10. Rowell RM. Chemical modification. In: Burley J, Evans J, Youngquist J, editors. Encyclopedia of forest sciences. Oxford: Elsevier Academic Press; 2004. p. 1269–74.

    Chapter  Google Scholar 

  11. Marcovich NE, Aranguren MI, Reboredo MM. Modified woodflour as thermoset fillers Part. I. Effect of the chemical modification and percentage of filler on the mechanical properties. Polymer. 2001;42:815–25.

    Article  CAS  Google Scholar 

  12. Yang HS, Gardner DJ, Kim HJ. Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim. 2009;98:553–8.

    Article  CAS  Google Scholar 

  13. Kaith BS, Singha AS, Kumar S, Kalia S. Mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. Int J Polym Mater. 2008;57:54–72.

    Article  CAS  Google Scholar 

  14. Bouza R, Marco C, Ellis G, Martin Z, Gomez MA, Barral L. Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008;94:119–27.

    Article  CAS  Google Scholar 

  15. Gray DG. Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose. 2008;15:297–301.

    Article  CAS  Google Scholar 

  16. Lenes M, Gregersen OW. Effect of surface chemistry and topography of sulphite fibres on the transcrystallinity of polypropylene. Cellulose. 2006;13:345–55.

    Article  CAS  Google Scholar 

  17. Chatterjee AM, Price FP. Heterogeneous nucleation of crystallization of high polymers from the melt I. Substrate-induced morphologies. J Polym Sci Phys Ed. 1975;13:2369–83.

    Article  CAS  Google Scholar 

  18. Wang C, Liu CR. Transcrystallization of polypropylene composites: nucleating ability of fibres. Polymer. 1999;40:289–98.

    Article  Google Scholar 

  19. Thomason JL, Van Rooyen AA. Transcrystallized interphase in thermoplastic composites. Part I. Influence of fibre type and crystallization temperature. J Mater Sci. 1992;27:889–96.

    Article  CAS  Google Scholar 

  20. Campbell D, Quayyum MM. Melt crystallization of polypropylene: effect of contact with fiber substrates. J Polym Sci Phys Ed. 1980;18:83–93.

    Article  CAS  Google Scholar 

  21. Arroyo M, Lopez-Manchado MA, Avalos F. Crystallization kinetics of polypropylene: II. Effect of the addition of short glass fibers. Polymer. 1997;38:5587–93.

    Article  CAS  Google Scholar 

  22. Cai Y, Petermann J, Wittich H. Transcrystallization in fiber-reinforced isotactic polypropylene composites in a temperature gradient. J Appl Polym Sci. 1997;65:67–75.

    Article  CAS  Google Scholar 

  23. Li H, Liu J, Wang D, Yan S. A comparison study on the homogeneity and heterogeneity fiber induced crystallization of isotactic polypropylene. Colloid Polym Sci. 2003;281:973–9.

    Article  CAS  Google Scholar 

  24. Varga J, Karger-Kocsis J. Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci. 1996;34:657–70.

    CAS  Google Scholar 

  25. Felix JM, Gatenholm P. Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J Mater Sci. 1994;29:3043–9.

    Article  CAS  Google Scholar 

  26. Zafeiropoulos NE, Baillie CA, Matthews FL. A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Composites A. 2001;32:525–43.

    Article  Google Scholar 

  27. Gray DG. Polypropylene transcrystallization at the surface of cellulose fibres. Polym Lett Ed. 1974;12:509–15.

    Article  CAS  Google Scholar 

  28. Lotz B, Wittman JC. Structural relationships in blends of isotactic polypropylene and polymers with aliphatic sequences. J Polym Sci Polym Phys. 1986;24:1559–75.

    Article  CAS  Google Scholar 

  29. Borysiak S. Determination of nucleation ability of wood for non-isothermal crystallisation of polypropylene. J Therm Anal Calorim. 2007;88:455–62.

    Article  CAS  Google Scholar 

  30. Borysiak S, Doczekalska B. The influence of chemical modification of wood on its nucleation ability in polypropylene composites. Polimery. 2009;54:820–7.

    CAS  Google Scholar 

  31. Bhuiyan MTR, Hirai N, Sobue N. Effect of intermittent heat treatment on crystallinity in wood cellulose. J Wood Sci. 2001;47:336–41.

    Article  CAS  Google Scholar 

  32. Prosiński S. Wood chemistry. Warsaw: PWRiS; 1969.

    Google Scholar 

  33. Goto T, Harada H, Saiki H. Fine structure of gamma irradiated tracheid wall in Picea abies. Bull Kyoto Univ For. 1974;46:153–61.

    Google Scholar 

  34. Antoine RC, Avella T, Van Eyseren JC. Studies of wood treated by high doses of γ-radiation. IAWA Bull. 1971;4:11–6.

    Google Scholar 

  35. Kasprzyk H, Wichlacz K, Borysiak S. The effect of gamma radiation on the supramolecular structure of pine wood cellulose in situ revealed by X-ray diffraction. EJPAU: Wood Technol. 2004;7:1–10.

    Google Scholar 

  36. Folkes MJ, Hardwick T. The molecular weight dependence of transcrystallinity in fibre reinforced thermoplastics. J Mater Sci Lett. 1984;3:1071–3.

    Article  CAS  Google Scholar 

  37. Huson MG, McGill WJ. Transcrystallinity in polypropylene. J Polym Sci Polym Chem Ed. 1984;22:3571–81.

    Article  CAS  Google Scholar 

  38. Turnbull D, Vonnegut B. Nucleation catalysis. Ind Eng Chem. 1952;44:1292–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by University Grant of Poznan University of Technology 32-171/10-DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slawomir Borysiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borysiak, S. A study of transcrystallinity in polypropylene in the presence of wood irradiated with gamma rays. J Therm Anal Calorim 101, 439–445 (2010). https://doi.org/10.1007/s10973-010-0780-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0780-2

Keywords

Navigation