Skip to main content
Log in

BSA denaturation in the absence and the presence of urea studied by the iso-conversional method and the master plots method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of bovine serum albumin (BSA) denaturation in the absence and the presence of urea was studied by the iso-conversional method and the master plots method using differential scanning calorimetry (DSC). The observed denaturation process was irreversible and approximately conformed to the simple order reaction, and the denaturation did not follow rigorously first-order kinetic model or other integral order reaction models. The denaturation temperature (T m), apparent activation energy (E a), approximate order of reaction (n), and pre-exponential factor (A) all distinctly decreased as the 2 mol L−1 urea was added, which indicated that the urea accelerated the denaturation process of BSA and greatly reduced thermal and kinetic stability of BSA. This study also demonstrated that the iso-conversional method, in combination with the master plots method, provides a valuable and useful approach to the study of the kinetic process of protein denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murayama K, Tomida M. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry. 2004;43:11526–32.

    Article  CAS  Google Scholar 

  2. Kinsella JE, Whitehead DM. Proteins in whey: chemical, physical and functional properties. Adv Food Nutr Res. 1989;33:343–8.

    Article  CAS  Google Scholar 

  3. Peters TJ. All about albumin biochemistry, genetics and medical applications. San Diego, CA: Academic Press; 1996.

    Google Scholar 

  4. Feil WP, Privalov PL. Thermodynamic investigations of proteins: II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride. Biophys Chem. 1976;4:33–40.

    Article  Google Scholar 

  5. Gekko K, Ito H. Competing solvent effects of polyols and guanidine hydrochloride on protein stability. Biochem J. 1990;107:572–7.

    CAS  Google Scholar 

  6. Conejero-Lara F, Sánchez-Ruiz JM, Mateo PL, Burgos FJ, Vendrell J, Avilés FX. Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain. Eur J Biochem. 1991;200:663–70.

    Article  CAS  Google Scholar 

  7. Charman SA, Mason KL, Charman WN. Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone. Pharm Res. 1993;10:954–62.

    Article  CAS  Google Scholar 

  8. Martínez JC, Filimonov VV, Mateo PL, Schreiber G, Fersht AL. A calorimetric study of the thermal stability of barstar and its interaction with barnase. Biochemistry. 1995;34:5224–33.

    Article  Google Scholar 

  9. Funahashi J, Takamo K, Ogosahara K, Yamagata Y, Yutani K. The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J Biochem. 1996;120:1216–23.

    CAS  Google Scholar 

  10. Weijers M, Barneveld PA, Stuart MAC, Visschers RW. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics. Protein Sci. 2003;12:2693–703.

    Article  CAS  Google Scholar 

  11. Baier S, McClements DJ. Impact of preferential interactions on thermal stability and gelation of bovine serum albumin in aqueous sucrose solutions. J Agric Food Chem. 2001;49:2600–8.

    Article  CAS  Google Scholar 

  12. Lumry R, Eyring H. Conformation changes of proteins. J Phys Chem. 1954;58:110–20.

    Article  CAS  Google Scholar 

  13. Vyazovkin S, Vincent L, Sbirrazzuoli N. Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci. 2007;7:1181–6.

    Article  CAS  Google Scholar 

  14. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Wight CA. Model free and model fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  16. Vyazovkin S. Kinetic analysis of reversible thermal decomposition of solids. Intl J Chem Kinet. 1995;27:73–84.

    Article  CAS  Google Scholar 

  17. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Intl J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  18. Pace CN, Show KI. Linear extrapolation method of analyzing solvent denaturation curves. Proteins. 2000;41:1–7.

    Article  Google Scholar 

  19. Vanzi F, Madan B, Sharp K. Effect of the protein denaturants urea and guanidinium on water structure: a structure and thermodynamic study. J Am Chem Soc. 1998;120:10748–53.

    Article  CAS  Google Scholar 

  20. Makhatadze GI. Thermodynamics of protein interactions with urea and guanidinium hydrochloride. J Phys Chem. 1999;103:4781–6.

    CAS  Google Scholar 

  21. Shimizu S, Chan HS. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Proteins. 2002;49:560–6.

    Article  CAS  Google Scholar 

  22. Wallqvist A, Covell DG, Thirumalai D. Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. J Am Chem Soc. 1998;120:427–8.

    Article  CAS  Google Scholar 

  23. Chatterjee S, Basumallick I. Thermodynamic studies on amino acid solvation in aqueous urea. J Chin Chem Soc. 2007;54:667–72.

    CAS  Google Scholar 

  24. Chatterjee S, Basumallick I. Transfer thermodynamics of protein in denaturing and stabilizing media. J Chin Chem Soc. 2008;55:17–22.

    CAS  Google Scholar 

  25. Tang WJ, Wang CX, Chen DH. An investigation of the pyrolysis kinetics of some aliphatic amino acids. J Anal Appl Pyrolysis. 2006;75:49–53.

    Article  CAS  Google Scholar 

  26. Cao XM, Li J, Yang X, Duan Y, Liu YW, Wang CX. Nonisothermal kinetic analysis of the effect of protein concentration on BSA aggregation at high concentration by DSC. Thermochim Acta. 2008;467:99–106.

    Article  CAS  Google Scholar 

  27. Cao XM, Yang X, Shi JY, Liu YW, Wang CX. The effect of glucose on bovine serum albumin denatured aggregation kinetics at high concentration. The master plots method study by DSC. J Therm Anal Calorim. 2008;93:451–8.

    Article  CAS  Google Scholar 

  28. Cao X, Wang ZY, Yang X, Liu YW, Wang CX. Effect of sucrose on BSA denatured aggregation at high concentration studied by the iso-conversional method and the master plots method. J Therm Anal Calorim. 2009;95:969–76.

    Article  CAS  Google Scholar 

  29. Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M. Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem. 2004;107:175–87.

    Article  CAS  Google Scholar 

  30. Militello V, Vetri V, Leone M. Conformational changes involved in thermal aggregation processes of bovine serum albumin. Biophys Chem. 2003;105:133–41.

    Article  CAS  Google Scholar 

  31. Hatakeyama T, Quinn FX. Thermal analysis dundamentals and applications to polymer science. 2nd ed. England: Wiley; 1999.

    Google Scholar 

  32. Mettler Toledo, Software option of STARe Software, DSC Evaluations 13 convertion determination 13-403 Mettler-Toledo GmbH 1993–2002 ME-709319G Printed in Switzerland, 0209/31. 12.

  33. Klibanov AM, Ahern TJ, Oxender DL, Fox CF, editors. Thermal stability of proteins. In: Protein engineering. New York: Alan R. Liss; 1987. p. 213–8.

  34. Hoffmann MAM, Roefs SPFM, Verheul M, v Mil PJJM, de Kruif CG. Aggregation of β-lactoglobulin studied by in situ light scattering. J Dairy Res. 1996;63:423–40.

    Article  Google Scholar 

  35. Alting AC, Hamer RJ, de Kruif CG, Visschers RW. Formation of disulfide bonds in acid-induced gels of preheated whey protein isolate. J Agric Food Chem. 2000;48:5001–7.

    Article  CAS  Google Scholar 

  36. Boye JI, Alli I, Ismail AA. Interactions involved in the gelation of bovine serum albumin. J Agric Food Chem. 1996;44:996–1004.

    Article  CAS  Google Scholar 

  37. Haug IJ, Skar HM, Vegarud GE, Langsrud T, Draget KI. Electrostatic effects on β-lactoglobulin transitions during heat denaturation as studied by differential scanning calorimetry. Food Hydrocolloids. 2009;23:2287–93.

    Article  CAS  Google Scholar 

  38. Ma CY, Harwalkar VR. Effects of medium and chemical modification on thermal characteristics of beta-lactoglobulin. J Therm Anal Calorim. 1996;47:1513–25.

    Article  CAS  Google Scholar 

  39. Li-Chana ECY, Mab CY. Thermal analysis of flaxseed (Linum usitatissimum) proteins by differential scanning calorimetry. Food Chem. 2002;77:495–502.

    Article  Google Scholar 

  40. Hédoux A, Willart JF, Ionov R, Affouard F, Guinet Y, Paccou L, et al. Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from raman scattering and differential scanning calorimetry investigations. J Phys Chem B. 2006;110:22886–93.

    Article  Google Scholar 

  41. Makhatadze GI, Privalov PL. Protein interactions with urea and guanidinium chloride: a calorimetric study. J Mol Biol. 1992;226:491–505.

    Article  CAS  Google Scholar 

  42. Sachurfu, Luo LF, Li QZ. Research on urea-induced protein denaturation. Acta Scientiarum Natura Univ NeiMongo. 2004;35:183–90.

    CAS  Google Scholar 

  43. Jain S, Ahluwalia JC. Differential scanning calorimetric ammonium and tetraalkylammonium lysozyme studies on the effect of halides on the stability of lysozyme. Biophys Chem. 1996;59:171–7.

    Article  CAS  Google Scholar 

  44. Mohamed AA, Duarte PR, Kim S. Effect of starch on the thermal kinetics and transmittance properties of lysozyme. J Sci Food Agric. 2005;85:450–8.

    Article  CAS  Google Scholar 

  45. Hoffmann MAM, van Miltenburg JC, van der Eerden JP, van Mil PJJM, de Kruif CG. Isothermal and scanning calorimetry measurements on β-lactoglobulin. J Phys Chem B. 1997;101:6988–94.

    Article  CAS  Google Scholar 

  46. Stirpe A, Guzzi R, Wijma H, Verbeet MPh, Canters GW, Sportelli L. Calorimetric and spectroscopic investigations of the thermal denaturation of wild type nitrite reductase. Biochim Biophys Acta. 2005;1752:47–55.

    CAS  Google Scholar 

  47. Chen YL, Mao HB, Zhang XF, Gong YD, Zhao NM. Thermal conformational changes of bovine fibrinogen by differential scanning calorimetry and circular dichroism. Int J Biol Macromol. 1999;26:129–34.

    Article  CAS  Google Scholar 

  48. Lyubarev AE, Kurganov BI, Orlov VN, Zhou HM. Two-state irreversible thermal denaturation of muscle creatine kinase. Biophys Chem. 1999;79:199–204.

    Article  CAS  Google Scholar 

  49. Bon CL, Nicolai T, Durand D. Kinetics of aggregation and gelation of globular proteins after heat-Induced denaturation. Macromolecules. 1999;32:6120–7.

    Article  Google Scholar 

  50. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49:117–237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 20373050 and 30600116), the Natural Science Foundation of Hubei, and China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Tian, Y., Wang, Z. et al. BSA denaturation in the absence and the presence of urea studied by the iso-conversional method and the master plots method. J Therm Anal Calorim 102, 75–81 (2010). https://doi.org/10.1007/s10973-010-0773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0773-1

Keywords

Navigation