Skip to main content
Log in

Standard enthalpies of formation of Li, Na, K, and Cs thiolates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard enthalpies of formation of alkaline metals thiolates in the crystalline state were determined by reaction-solution calorimetry. The obtained results at 298.15 K were as follows: \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} ({\text{MSR,}}\;{\text{cr}}) \)/kJ mol−1 = −259.0 ± 1.6 (LiSC2H5), −199.9 ± 1.8 (NaSC2H5), −254.9 ± 2.4 (NaSC4H9), −240.6 ± 1.9 (KSC2H5), −235.8 ± 2.0 (CsSC2H5). These results where compared with the literature values for the corresponding alkoxides and together with values for \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{MSH}},\;{\text{cr}}}\right)\) were used to derive a consistent set of lattice energies for MSR compounds based on the Kapustinskii equation. This allows the estimation of the enthalpy of formation for some non-measured thiolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2

Similar content being viewed by others

Notes

  1. Formation enthalpies of SC2H5 and S-n-C4H9 were calculated using data from Ref. [34] for the enthalpies of formation of the gaseous thiols and the hydrogen, and assuming a 380.7 ± 6.3 kJ mol−1 value for the S–H bond according to Ref. [37].

  2. \( \Updelta_{\text{ea}} H_{\text{m}}^{\text{o}} ( {\text{SR)}} = \, E_{\text{ea}} \left( {\text{SR}} \right) + 6. 1 9 7 {\text{ kJ}}\;{\text{mol}}^{ - 1} , \) where Eea is the electron affinity of the SR species given in Ref. [37]. The addition of the 6.197 kJ mol−1 factor to Eea(SR) (thermal ion convention) makes the \( \Updelta_{\text{ea}} H_{\text{m}}^{\text{o}} ( {\text{SR)}} \) values consistent with the \( \Updelta_{\text{i}} H_{\text{m}}^{\text{o}} ( {\text{M)}} \)values taken from Ref. [34].

  3. For a detailed discussion of Kapustinskii equation see Ref. [41].

References

  1. Streitwieser A Jr, Heatcock CH. Introduction to organic chemistry. 3rd ed. New York: MacMillan; 1985.

    Google Scholar 

  2. Stalke D. The lithocene anion and open calcocene—new impulses in the chemistry of alkali and alkaline earth metallocenes. Angew Chem Int Ed Eng. 1994;33:2168–71.

    Article  Google Scholar 

  3. Wilkinson G, Cotton FA. Cyclopentadienyl and arene metal compounds. Prog Inorg Chem. 1951;1:1–124.

    Article  Google Scholar 

  4. Martinho Simões JA, Beauchamp JL. Transition metal-hydrogen and metal-carbon bond strengths: the keys to catalysis. Chem Rev. 1990;90:629–88.

    Article  Google Scholar 

  5. Marks TJ, editor. Bonding energetics in organometallic compounds. ACS symposium series No. 428, Washington, DC, 1990.

  6. Martinho Simões JA, editor. Energetics of organometallic species. Dordrecht: Kluwer; 1992.

    Google Scholar 

  7. Minas da Piedade ME. Energetics of stable molecules and reactive intermediates. Kluwer: Dordrecht; 1999.

    Google Scholar 

  8. Bradley DC, Mehrotra RC. Metal alkoxides. London: Academic Press; 1978.

    Google Scholar 

  9. Malhotra KC, Martin RL. Metal phenoxides. J Organometall Chem. 1982;239:159–87.

    Article  CAS  Google Scholar 

  10. Sisley MJ, McDonald R, Jordan RB. Linkage isomerism, structure, and reactivity studies of sulfenamide complexes of cobalt(III). Inorg Chem. 2004;43:5339–50.

    Article  CAS  Google Scholar 

  11. Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF. Alcohols, aliphatic. In: Bailey JE, Brinker CJ, Cornils B, editors. Ullmann’s encyclopedia of industrial chemistry. 5th ed. Weinheim: VCH; 1985.

    Google Scholar 

  12. Wheatley PJ. A physicochemical investigation of the methoxides of lithium, sodium, and potassium. J Chem Soc 1960;4270–74.

  13. Weiss E. Die kristallstruktur des kaliummethylats. Helvetica Chimica Acta. 1963;46:2051–4.

    Article  CAS  Google Scholar 

  14. Weiss E, Alsdorf H. Die kristallstrukturen des kalium-, rubidium- und cäsiummethylats. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1970;372:206–13.

    Article  CAS  Google Scholar 

  15. Weiss E, Alsdorf H. Die Kristallstruktur des Natriummethylats. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 1964;332:197–203.

    Article  Google Scholar 

  16. Weiss E, Alsdorf H, Kuhr H. Structure of alkali metal t-butoxides. Ang Chem Int Ed. 1967;6:801–2.

    Article  CAS  Google Scholar 

  17. Weiss E, Alsdorf H, Kuhr H, Grutzmacher. X-Ray NMR and mass spectrometric studies of potassium rubidium and cesium tert-butylates. Chemische Berichte-Recueil 1968;101:3777–6.

  18. Greiser T, Weiss E. Crystal-structure of sodium tert-butoxide, [(CH3)3CONA]9-[(CH3)3CONA]6, a new type of structure with nonameric and hexameric units. Chemische Berichte-Recueil. 1977;110:3388–96.

    Article  CAS  Google Scholar 

  19. Davies JE, Kopf J, Weiss E. Structure of sodium tert-butoxide: a re-refinement. Acta Crystallogr B. 1982;38:2251–3.

    Article  Google Scholar 

  20. Chisholm MH, Drake SR, Naiini AA, Streib WE. The synthesis and characterization of volatile lithium alkoxides, and the single-crystal X-ray structure of [LIOCME2PH]6. Polyhedron. 1991;10:805–10.

    Article  CAS  Google Scholar 

  21. Mann S, Jansen M. Crystal-structure of cesium-tert-butanolate, CSOC4H9. Zeitschrift Fur Kristallographie. 1994;209:852–852.

    Article  CAS  Google Scholar 

  22. Kunert M, Dinjus E, Nauck M, Sieler J. Structure and reactivity of sodium phenoxide—following the course of the Kolbe-Schmitt reaction. Chemische Berichte-Recueil. 1997;130:1461–5.

    Article  CAS  Google Scholar 

  23. Dinnebier RE, Pink M, Sieler J, Stephens PW. Novel alkali-metal coordination in phenoxides: powder diffraction results on C6H5OM (M = Li, Na, K, Rb, Cs). Inorg Chem. 1997;36:3398–401.

    Article  CAS  Google Scholar 

  24. Leal JP, Cachata V, Carvalho A. Standard enthalpies of formation of Li, Na, K and Tl cyclopentadienyls. Eur J Inorg Chem 2001;1587–91.

  25. Leal JP, Martinho Simões JA. Standard molar enthalpies of formation of lithium alkoxides. J Organometall Chem. 1993;460:131–8.

    Article  CAS  Google Scholar 

  26. Leal JP, Pires de Matos A, Martinho Simões JA. Standard enthalpies of formation of sodium alkoxides. J Organometall Chem. 1991;403:1–10.

    Article  CAS  Google Scholar 

  27. Nunes P, Leal JP, Cachata V, Raminhos H, da Piedade MEM. Bonding energetics in alkaline metal alkoxides and phenoxides. Chemistry. 2003;9:2095–101.

    Article  CAS  Google Scholar 

  28. Blanchard JM, Joly RD, Letoffe JM, Perachon G, Thourey J. Enthalpy of formation of alkalis metals ethylates. J Chim Phys. 1974;71:472–4.

    CAS  Google Scholar 

  29. Chandran K, Srinivasan TG, Gopalan A, Ganesan V. Standard molar enthalpies of formation of sodium alkoxides. J Chem Thermodyn. 2007;39:449–54.

    Article  CAS  Google Scholar 

  30. Chadwick S, Englich U, Noll B, Ruhlandt-Senge K. Syntheses and structure determinations of calcium thiolates. Inorg Chem. 1998;37:4718–25.

    Article  CAS  Google Scholar 

  31. Chadwick S, Englich U, Ruhlandt-Senge K. Formation of separated versus contact ion triples in heavy alkaline-earth thiolates. Chem Commun 1998:2149–50.

  32. Chadwick S, Englich U, Senge MO, Noll BC, Ruhlandt-Senge K. Novel structural principles in magnesium thiolate chemistry: monomers, trimers, and the first magnesiate thiolate. Organometallics. 1998;17:3077–86.

    Article  CAS  Google Scholar 

  33. Purdy AP, Berry AD, George CF. Synthesis, structure, and thiolysis reactions of pyridine soluble alkaline earth and yttrium thiolates. Inorg. Chem. 1997;36:3370–5.

    Article  CAS  Google Scholar 

  34. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, et al. The NBS tables of chemical thermodynamic properties selected values for inorganic and C1 C2 organic substance in SI units. J Phys Chem Ref Data 1982;11(2):3–392.

    Google Scholar 

  35. Pedley JB. Thermochemical data and structures of organic compounds. thermodynamics research center. College Station: CRC Press; 1994.

    Google Scholar 

  36. Cox JD, Wagman DD, Medvedev VA. Codata key values for thermodynamics. New York: Hemisphere; 1989.

    Google Scholar 

  37. McMillen DF, Golden DM. Hydrocarbon bond dissociation energies. Ann Rev Phys Chem 1982;33:493–532.

    Google Scholar 

  38. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG. Gas phase ion and neutral thermochemistry. J Phys Chem Ref Data 1988;17(Suppl 1):5–861.

    Google Scholar 

  39. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem. 2006;78:2051–66.

    Article  CAS  Google Scholar 

  40. Plyasunova NV, Plyasunov AV, Shock EL. Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 2. Aliphatic thiols, alkyl sulfides, and polysulfides. J Chem Eng Data. 2005;50:246–53.

    Article  CAS  Google Scholar 

  41. Johnson DA. Some thermodynamic aspects of inorganic chemistry. 2nd ed. Cambridge: Cambridge University Press; 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Leal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leal, J.P. Standard enthalpies of formation of Li, Na, K, and Cs thiolates. J Therm Anal Calorim 100, 441–446 (2010). https://doi.org/10.1007/s10973-009-0657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0657-4

Keywords

Navigation