Skip to main content
Log in

Molecular energetics of alkyl substituted pyridine N-oxides

An experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard ( = 0.1 MPa) energies of combustion in oxygen, at T = 298.15 K, for the solid compounds 2-methylpyridine-N-oxide (2-MePyNO), 3-methylpyridine-N-oxide (3-MePyNO) and 3,5-dimethylpyridine-N-oxide (3,5-DMePyNO) were measured by static-bomb calorimetry, from which the respective standard molar enthalpies of formation in the condensed phase were derived. The standard molar enthalpies of sublimation, at the same temperature, were measured by Calvet microcalorimetry. From the standard molar enthalpy of formation in gaseous phase, the molar dissociation enthalpies of the N–O bonds were derived, and compared with values of the dissociation enthalpies of other N–O bonds available for other pyridine-N-oxide derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Skálová L, Nobilis M, Szotáková B, Wsól V, Kubícek V, Baliharová V, et al. Effect of substituents on microsomal reduction of benzo(c)fluorene N-oxides. J Chem Biol Interact. 2000;126:185–200.

    Article  Google Scholar 

  2. Greer ML, Duncan JR, Duff JL, Blackstock SC. Solid-state complexes of quinoxaline- and phenazine-N,N′-dioxide donors with tetracyanoethylene. Crystal engineering via donor-acceptor interactions. Tetrahedron Lett. 1997;38:7665–8.

    Article  CAS  Google Scholar 

  3. Ortega MA, Morancho MJ, Martínez-Crespo FJ, Sainz Y, Montoya ME, Ceráin AL, et al. New quinoxalinecarbonitrile 1,4-di-N-oxide derivatives as hypoxic-cytotoxic agents. Eur J Med Chem. 2000;35:21–30.

    Article  CAS  Google Scholar 

  4. Ganley B, Chowdhury G, Bhansali J, Daniels JD, Gates KS. Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide. Bioinorg Med Chem. 2001;9:2395–401.

    Article  CAS  Google Scholar 

  5. Acree WE Jr, Pilcher G, Ribeiro da Silva MDMC. The Dissociation Enthalpies of Terminal (N–O) Bonds in Organic Compounds. J Phys Chem Ref Data 2005;34:553–72, and references cited therein.

    Google Scholar 

  6. Gomes JRB, Vieira MAA, Stovall DM, Acree WE Jr, Ribeiro da Silva MDMC. Experimental thermochemical study of 6-Chloro-2,3-dimethylquinoxaline 1,4-dioxide and DFT evaluation of the N–O bond enthalpies in related haloquinoxalines. Bull Chem Soc Japan. 2007;80:1770–5.

    Article  CAS  Google Scholar 

  7. Gomes JRB, Ribeiro da Silva MDMC, Ribeiro da Silva MAV. Quinoxaline-1,4-dioxide: substituent effects on the N–O bond dissociation enthalpy. Chem Phys Lett. 2006;429:18–22.

    Article  CAS  Google Scholar 

  8. Gomes JRB, Sousa EA, Gomes P, Vale N, Gonçalves JM, Pandey S, et al. Thermochemical studies on 3-methyl-quinoxaline-2-carboxamide-1,4-dioxide derivatives: enthalpies of formation and of N–O bond dissociation. J Phys Chem B. 2007;111:2075–80.

    Article  CAS  Google Scholar 

  9. Gomes JRB, Sousa EA, Gonçalves JM, Gales L, Damas AM, Gomes P, et al. Energetic and structural characterization of 2-R-3-methylquinoxaline-1,4-dioxides (R = benzoyl or tert-butoxycarbonyl): experimental and computational studies. J Phys Org Chem. 2007;20:491–8.

    Article  CAS  Google Scholar 

  10. Gomes JRB, Monteiro AR, Campos BB, Gomes P, Ribeiro da Silva MDMC. The enthalpies of dissociation of the NO bonds in two quinoxaline derivatives. J Phys Org Chem. 2009;22:17–23.

    Article  CAS  Google Scholar 

  11. Ribeiro da Silva MDMC, Vieira MAA, Givens C, Keown S, Acree WE Jr. Experimental thermochemical study of two polymethylpyrazine N,N′-dioxide derivatives. Thermochim Acta. 2006;450:67–70.

    Article  CAS  Google Scholar 

  12. Ribeiro da Silva MDMC, Cabral JITA, Givens C, Keown S, Acree WE Jr. Thermochemical study of three dimethylpyrazine derivatives. J Therm Anal Calor. 2008;92:73–8.

    Article  CAS  Google Scholar 

  13. Gomes JRB, Sousa EA, Gonçalves JM, Monte MJS, Gomes P, Pandey S, et al. Energetics of the N–O Bonds in 2-hydroxyphenazine-di-N-oxide. J Phys Chem B. 2005;109:16188–95.

    Article  CAS  Google Scholar 

  14. Shaofeng L, Pilcher G. Enthalpy of formation of pyridine-N-oxide: the dissociation enthalpy of the (N–O) bond. J Chem Thermodyn. 1988;20:463–5.

    Article  CAS  Google Scholar 

  15. da Silva MLCP, Chagas AP, Airoldi C. Heterocyclic N-oxide ligands: a thermochemical study of adducts with zinc, cadmium, and mercury chlorides. J Chem Soc Dalton Trans 1988:2113–6.

  16. Steele WV, Chirico DR, Collier WB, Hossenlopp JA, Nguyen A, Strube MM. Thermochemical and thermophysical properties of organic nitrogen compounds found in fossil fuels. NIPER-188. DOE Fossil Energy, Bartlesville Project Office; 1986.

  17. Airoldi C, Gonçalves L. Standard molar enthalpies of formation of some crystalline amine N-oxides. Thermochim Acta. 1992;194:259–63.

    Article  CAS  Google Scholar 

  18. Lebdev VP, Chironov VV, Kizin AN, Falyakhov IF, Saifullin IS, Klyuchnikov OR, et al. Izv Akad Nauk Ser Khim. 1995;4:660.

    Google Scholar 

  19. Ribeiro da Silva MDMC, Matos MAR, Vaz MC, Santos LMNBF, Pilcher G, Acree WE Jr, et al. Enthalpies of combustion of the pyridine N-oxide derivatives: 4-methyl-, 3-cyano-, 4-cyano-, 3-hydroxy-, 2-carboxy-, 4-carboxy-, and 3-methyl-4-nitro, and of the pyridine derivatives: 2-carboxy-, and 4-carboxy-. The dissociation enthalpies of the N–O bonds. J Chem Thermodyn. 1998;30:869–78.

    Article  CAS  Google Scholar 

  20. Acree WE Jr, Tucher SA, Ribeiro da Silva MDMC, Matos MAR, Gonçalves JM, Ribeiro da Silva MAV, et al. Enthalpies of combustion of 4-nitropyridine N-oxide and pyridine-3-carboxylic acid N-oxide: the dissociation enthalpies of the N–O bonds in pyridine N-oxide derivatives. J Chem Thermodyn. 1995;27:391–8.

    Article  CAS  Google Scholar 

  21. Ribeiro da Silva MDMC, Gonçalves JM, Ferreira SCC, Da Silva LCM, Sottomayor MJ, Pilcher G, et al. Experimental thermochemical study of the enthalpies of formation and sublimation of isonicotinamide, picolinamide, nicotinamide, isonicotinamide N-oxide, and nicotinamide N-oxide. The dissociation enthalpies of the N–O bonds. J Chem Thermodyn. 2001;33:1263–75.

    Article  CAS  Google Scholar 

  22. Casteel JF, Sears PG. Dielectric constants, viscosities, and related physical properties of four liquid pyridine-N-oxides at several temperatures. J Chem Eng Data. 1974;19:303–6.

    Article  CAS  Google Scholar 

  23. Essery JM, Schofield K. Some derivatives of 4-amino- and 4-nitro-pyridine. J Chem Soc 1960:4953–9.

  24. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. The construction, calibration and use of a new high-precision static-bomb calorimeter. Rev Port Quím. 1984;26:163–72.

    CAS  Google Scholar 

  25. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. Enthalpies of combustion of 1,2-dihydroxybenzene and of six alkylsubstituted 1,2-dihydroxybenzenes. J Chem Thermodyn. 1984;16:1149–55.

    Article  CAS  Google Scholar 

  26. Gundry HA, Harrop D, Head AJ, Lewis GB. Thermodynamic properties of organic oxygen compounds 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol. J Chem Thermodyn. 1969;1:321–32.

    Article  CAS  Google Scholar 

  27. Bickerton J, Pilcher G, Al-Takhin G. Enthalpies of combustion of the three aminopyridines and the three cyanopyridines. J Chem Thermodyn. 1984;16:373–8.

    Article  CAS  Google Scholar 

  28. Ribeiro da Silva MDMC, Santos LMNBF, Silva ALR, Fernandes Ó, Acree WE. Energetics of 6-methoxyquinoline and 6-methoxyquinoline N-oxide: the dissociation enthalpy of the (N–O) bond. J Chem Thermodyn. 2003;35:1093–100.

    Article  CAS  Google Scholar 

  29. Certificate of Analysis Standard Reference Material 39j Benzoic Acid Calorimetric Standard. Washington: NBS; 1995.

  30. Coops J, Jessup RS, van Nes K. Calibration of calorimeters for reactions in a bomba at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956.

    Google Scholar 

  31. Skinner HA, Snelson A. The heats of combustion of the four isomeric butyl alcohols. Trans Faraday Soc. 1960;56:1776–83.

    Article  CAS  Google Scholar 

  32. Adedeji FA, Brown DLS, Connor JA, Leung M, Paz-Andrade MI, Skinner HA. Thermochemistry of arene chromium tricarbonyls and the strenghts of arene-chromium bonds. J Organomet Chem. 1975;97:221–8.

    Article  CAS  Google Scholar 

  33. Stull RD, Westrum EF, Sinke GC. The chemical thermodynamics of organic compounds. New York: Wiley; 1969.

    Google Scholar 

  34. Sabbah R, Xu-wu A, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.

    Article  CAS  Google Scholar 

  35. Monte MJS, Santos LMNBF, Fulem M, Fonseca JMS, Sousa CAD. New static apparatus and vapor pressure of reference materials: naphthalene, benzoic acid, benzophenone, and ferrocene. J Chem Eng Data. 2006;51:757–66.

    Article  CAS  Google Scholar 

  36. Wagman DD, Evans WH, Parker VB, RH Shum, F Halow, SM Bailey, KL Churney, RL Nuttall. NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 1982;11(Suppl 2).

  37. Washburn EW. Standard states for bomb calorimetry. J Res Nat Bur Stand (US). 1933;10:525–58.

    CAS  Google Scholar 

  38. Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956.

    Google Scholar 

  39. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem. 2006;78:2051–66.

    Article  CAS  Google Scholar 

  40. Rossini FD. Assignment of uncertainties to thermochemical data. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956.

    Google Scholar 

  41. Olofsson G. Assignment of uncertainties. In: Sunner S, Månsson M, editors. Combustion calorimetry. Oxford: Pergamon; 1979.

    Google Scholar 

  42. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere; 1989

    Google Scholar 

  43. Clarke ECW, Glew DN. Evaluation of thermodynamic functions from equilibrium constants. Trans Faraday Soc. 1966;62:539–47.

    Article  CAS  Google Scholar 

  44. Pedley JB. Thermochemical data and structures of organic compounds. Thermodynamics Research Center, College Station, TX: CRC Press; 1994.

    Google Scholar 

  45. Ribeiro da Silva MDMC, Matos MAR, Miranda MS, Morais VMF, Acree WE. Experimental and theoretical study of the dissociation enthalpy of the N–O bond on 2-hydroxypyridine N-oxide: theoretical analysis of the energetics of the N–O bond for hydroxypyrydine N-oxide isomers. J Chem Thermodyn. 2004;36:107–13.

    Article  CAS  Google Scholar 

  46. Ribeiro da Silva MAV, Morais VMF, Matos MAR, Rio CMA, Piedade CMGS. Thermochemical and theoretical study of some methyldiazines. Struct Chem. 1996;7:329–36.

    Article  Google Scholar 

  47. Tjebbes J. The heats of combustion and formation of the three diazines and their resonance energies. Acta Chem Scand 1962;16:916–21.

    Article  CAS  Google Scholar 

  48. Acree WE Jr, Powell JR, Tucker SA, Ribeiro da Silva MDMC, Matos MAR, Gonçalves JM, et al. Thermochemical and theoretical study of some quinoxaline 1,4-dioxides and of pyrazine 1,4-dioxide. J Org Chem. 1997;62:3722–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal and to FEDER for financial support. J I.T.A.C. thanks FCT and the European Social Fund (ESF) under Community Support Framework (CSF) for the award of a Post-Doc research grant (BPD/27140/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. M. C. Ribeiro da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabral, J.I.T.A., Monteiro, R.A.R., Rocha, M.A.A. et al. Molecular energetics of alkyl substituted pyridine N-oxides. J Therm Anal Calorim 100, 431–439 (2010). https://doi.org/10.1007/s10973-009-0646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0646-7

Keywords

Navigation