Skip to main content
Log in

Thermal analysis and crystallization from melts

β-adrenergic compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The growth of atenolol, pindolol and betaxolol hydrochloride from melt was investigated by differential scanning calorimetry (DSC) and polarized light thermal microscopy (PLTM). Phase transitions occurring on cooling and subsequent reheating runs performed between −160 °C and a temperature above the respective melting points were studied by DSC. The thermal cycles were also followed by PLTM. Details about the dynamic of the crystallization front taken from microscopic observations are given. An explanation of the results on the basis of molecular supramolecular recognition is advanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Turi A. Thermal characterization of polymorphic materials. London: Academic Press; 1981.

    Google Scholar 

  2. Mullin JW. Crystallization. Oxford: Elsevier; 2001.

    Google Scholar 

  3. Ropp RC. Solid state chemistry. Amsterdam: Elsevier; 2003.

    Google Scholar 

  4. Kim JW, Ulrich J. Prediction of degree of deformation and crystallization time of molten droplets in pastillation process. Int J Pharm. 2003;257:205–15.

    Article  CAS  Google Scholar 

  5. Goskonda SR, Hileman GA, Upadrashta SM. Development of matrix controlled release beads by extrusion-spheronization technology using a statistical screening design. Drug Dev Ind Pharm. 1994;20:279–92.

    Article  CAS  Google Scholar 

  6. Schaefer T, Holm P, Kristensen HG. Melt granulation in a laboratory scale high shear mixer. Drug Dev Ind Pharm. 1990;16:1249–77.

    Article  CAS  Google Scholar 

  7. Passerini N, Albertini B, González-Rodríguez ML, Cavallari C, Rodriguez L. Preparation and characterisation of ibuprofen–poloxamer 188 granules obtained by melt granulation. Eur J Pharm Sci. 2002;15:71–8.

    Article  CAS  Google Scholar 

  8. Nunes SCC, Eusebio ME, Leitão MLP, Redinha JS. Polymorphism of pindolol, 1-(1H-indol-4-yloxyl)-3-isopropylamino-propan-2-ol. Int J Pharm. 2004;285:13–21.

    Article  CAS  Google Scholar 

  9. Canotilho J, Costa FS, Sousa AT, Redinha JS, Leitão MLP. Melting curves of terfenadine crystallized from different solvents. J Therm Anal Calorim. 1998;54:139–49.

    Article  CAS  Google Scholar 

  10. Castro RAE. Antagonistas Adrenérgicos Selectivos beta 1: Estrutura do Atenolol. Ph.D. thesis, Universidade de Coimbra; 2006.

  11. Mahrous MS, Issa AS, Ahmed NS. Oxidants for the colorimetric determination of pindolol. Talanta. 1992;39:69–72.

    Article  CAS  Google Scholar 

  12. Stenlake JB. Foundations of molecular pharmacology, vol. 1. London: The Athlone Press of the University of London; 1979.

    Google Scholar 

  13. Kelton KF. Crystal nucleation in liquid and glasses in solid state physics. London: Academic Press; 1991.

    Google Scholar 

  14. Montserrat S, Roman F, Colomer P. Study of the crystallization and melting region of PET and PEN and their blends by TMDSC. J Therm Anal Calorim. 2003;72:657–66.

    Article  CAS  Google Scholar 

  15. Balsara NP, Fetters LJ, Hadjichristidis N, Lohse DJ, Han CC, Graessley WW, et al. Thermodynamic interactions in model polyolefin blends obtained by small-angle neutron scattering. Macromolecules. 1992;25:6137–47.

    Article  CAS  Google Scholar 

  16. Briber RM, Khoury F. The morphology of poly(vinylidene fluoride) crystallized from blends of poly(vinylidene fluoride) and poly(ethyl acrylate). J Polym Sci B. 1993;31:1253–72.

    Article  CAS  Google Scholar 

  17. Hu WB, Mathot VBF. Liquid–liquid demixing in a binary polymer blend driven solely by the component-selective crystallizability. J Chem Phys. 2003;119:10953–8.

    Article  CAS  Google Scholar 

  18. Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M, Funakoshi K. A first-order liquid–liquid phase transition in phosphorus. Nature. 2000;403:170–3.

    Article  CAS  Google Scholar 

  19. Mishima O. Liquid–liquid critical point in heavy water. Phys Rev Lett. 2000;85:334–6.

    Article  CAS  Google Scholar 

  20. Soper AK, Ricci MA. Structures of high-density and low-density water. Phys Rev Lett. 2000;84:2881–4.

    Article  CAS  Google Scholar 

  21. Lacks DJ. First-order amorphous–amorphous transformation in silica. Phys Rev Lett. 2000;84:4629–32.

    Article  CAS  Google Scholar 

  22. Vanthiel M, Ree FH. High-pressure liquid–liquid phase change in carbon. Phys Rev B. 1993;48:3591–9.

    Article  CAS  Google Scholar 

  23. Nunes SCC, Jesus AJL, Rosado MTS, Eusebio MES. Conformational study of isolated pindolol by HF, DFT and MP2 calculations. J Mol Struct (Theochem). 2007;806:231–8.

    Article  CAS  Google Scholar 

  24. Debenedetti PG. Metastable liquids: concepts and principles. Princeton: Princeton University Press; 1996.

    Google Scholar 

  25. Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Eng. 1995;34:2311–27.

    Article  CAS  Google Scholar 

  26. Castro RAE, Canotilho J, Barbosa RM, Silva MR, Beja AM, Paixa JA, et al. Conformational isomorphism of organic crystals: racemic and homochiral Atenolol. Cryst Growth Des. 2007;7:496–500.

    Article  Google Scholar 

  27. Castro RAE, Canotilho J, Barbosa RM, Redinha JS. Infrared spectroscopy of racemic and enantiomeric forms of atenolol. Spectrochim Acta A. 2007;67:1194–200.

    Article  Google Scholar 

  28. Canotilho J, Castro RAE, Teixeira MHSF, Leitão MLP, Redinha JS. Infrared study of the acidic and basic forms of betaxolol. Spectrochim Acta A. 2006;64:279–86.

    Article  Google Scholar 

  29. Canotilho J, Castro RAE, Rosado MTS, Ramos Silva M, Matos Beja A, Paixão JA, et al. The structure of betaxolol from single crystal X-ray diffraction and natural bond orbital analysis. J Mol Struct. 2008;891:437–42.

    Article  CAS  Google Scholar 

  30. Chattopadhyay TK, Palmer RA, Mahadevan D. Molecular and absolute crystal structure of pindolol-1-(1H-indol-4-yloxy)-3-[(1-methylethyl)amino]-2-propanol: a specific beta-adrenoreceptor antagonist with partial agonist activity. J Chem Crystallogr. 1995;25:195–9.

    Article  CAS  Google Scholar 

  31. Castro RAE, Canotilho J, Nunes SCC, Eusebio ME, Redinha JS. A study of the structure of the pindolol based on infrared spectroscopy and natural bond orbital theory. Spectrochim Acta A. 2009;72:819–26.

    Article  Google Scholar 

  32. Mairesse G, Boivin JC, Thomas DJ, Bonte JP, Lesieur D, Lespagnol C. Structure du chlorhydrate de l’[hydroxy-1-(R, S) isopropylamino-2 éthyl]-6 dihydro-2, 3 benzoxazole-1, 3 one-2, C12H16N2O3∙HCl. Acta Crystallogr C. 1984;40:1432–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Redinha.

Additional information

The coauthors would like to dedicate this manuscript to the memory of Professor M. Luísa P. Leitão for her invaluable contribution to the advance of thermal analysis in their research center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canotilho, J., Castro, R.A.E., Rosado, M.T.S. et al. Thermal analysis and crystallization from melts. J Therm Anal Calorim 100, 423–429 (2010). https://doi.org/10.1007/s10973-009-0645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0645-8

Keywords

Navigation