Skip to main content
Log in

Standard molar enthalpies of formation of some methylfuran derivatives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard (p o = 0.1 MPa) molar enthalpies of formation \( {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{l),}} \) of the liquid 2-methylfuran, 5-methyl-2-acetylfuran and 5-methyl-2-furaldehyde were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of vaporization of the three compounds. The standard (p o = 0.1 MPa) molar enthalpies of formation of the compounds, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization. The results obtained were −(76.4 ± 1.2), −(253.9 ± 1.9), and −(196.8 ± 1.8) kJ mol−1, for 2-methylfuran, 5-methyl-2-acetylfuran, and 5-methyl-2-furaldehyde, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Moreau C, Gandini A, Belgacem MN. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal. 2004;27:11–30.

    Article  CAS  Google Scholar 

  2. International Agency for Research on Cancer. IARC Monographs on the evaluation of carcinogenic risks to humans. Lyon France: IARC 1995;63:393.

  3. Limacher A, Kerler J, Petit B, Blank I. Formation of furan and methylfuran from ascorbic acid in model systems and food. Food Addit Contam. 2007;24:122–35.

    Article  CAS  Google Scholar 

  4. Limacher A, Kerler J, Davidek T, Schmalzried F, Blank I. Formation of furan and methylfuran by maillard-type reactions in model systems and food. J Agric Food Chem. 2008;56:3639–47.

    Article  CAS  Google Scholar 

  5. Märk J, Phillippe P, Lindinger C, Blank I, Märk T. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. J Agric Food Chem. 2006;5:2786–93.

    Article  Google Scholar 

  6. Ribeiro da Silva MAV, Amaral LMPF, Santos AFLOM. Thermochemical and thermophysical study of 2-thiophenecarboxylic acid hydrazide and 2-furancarboxylic acid hydrazide. J Chem Thermodyn. 2008;40:1588–1593; Corrigendum to Thermochemical and thermophysical study of 2-thiophenecarboxylic acid hydrazide and 2-furancarboxylic acid hydrazide [J Chem Thermodyn. 2008;40:1588–1593] J Chem Thermodyn. 2009;41:897.

    Google Scholar 

  7. Ribeiro da Silva MAV, Amaral LMPF. Standard molar enthalpies of formation of 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde. J Chem Thermodyn. 2009;41:26–9.

    Article  CAS  Google Scholar 

  8. Ribeiro da Silva MAV, Amaral LMPF. Standard molar enthalpies of formation of some vinylfuran derivatives. J Chem Thermodyn. 2009;41:349–54.

    Article  CAS  Google Scholar 

  9. Catalog. Germany: Alfa Aesar; 2006–2007.

  10. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. The construction, calibration and use of a new high-precision static-bomb calorimeter. Rev Port Quím. 1984;26:163–72.

    CAS  Google Scholar 

  11. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. Enthalpies of combustion of 1,2-dihydroxybenzene and of six alkylsubstituted 1,2-dihydroxybenzenes. J Chem Thermodyn. 1984;16:1149–55.

    Article  CAS  Google Scholar 

  12. Certificate of Analysis Standard Reference Material 39j Benzoic Acid Calorimetric Standard. Washington: NBS; 1995.

  13. Snelson A, Skinner HA. The heats of combustion of the four isomeric butyl alcohols. Trans Faraday Soc. 1960;56:1776–83.

    Article  Google Scholar 

  14. Coops J, Jessup RS, van Nes K. Calibration of calorimeters for reactions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry. Vol 1. New York: Interscience; 1956.

  15. Wagman DD, Evans WH, Parker VB, Shum RH, Halow F, Bailey SM, Churney KL, Nuttall NI. NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 1982;11(Suppl 2).

  16. Washburn EW. Standard states for bomb calorimetry. J Res Natl Bur Stand (US). 1933;10:525–58.

    CAS  Google Scholar 

  17. Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry. Vol 1. New York: Interscience; 1956.

  18. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem. 2006;78:2051–66.

    Article  CAS  Google Scholar 

  19. Santos LMNBF, Schröder B, Fernandes OOP, Ribeiro da Silva MAV. Measurement of enthalpies of sublimation by drop method in a Calvet type calorimeter: design and test of a new system. Thermochim Acta. 2004;415:15–20.

    Article  CAS  Google Scholar 

  20. Ribeiro da Silva MAV, Matos MAR, Amaral LMPF. Thermochemical study of 2-, 4-, 6-, and 8-methylquinoline. J Chem Thermodyn. 1995;27:565–74.

    Article  CAS  Google Scholar 

  21. Adedeji FA, Brown DLS, Connor JA, Leung M, Paz-Andrade MI, Skinner HA. Thermochemistry of arene chromium tricarbonyls and the strengths of arene-chromium bonds. J Organomet Chem. 1975;97:221–8.

    Article  CAS  Google Scholar 

  22. Stull RD, Westrum EF, Sinke GC. The chemical thermodynamics of organic compounds. New York: Wiley; 1969.

    Google Scholar 

  23. Pedley JB. Thermochemical data and structures of organic compounds. Thermodynamics Research Center, College Station, TX: CRC Press; 1994.

  24. Sabbah R, Xu-wu A, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.

    Article  CAS  Google Scholar 

  25. Rossini FD. Assignment of uncertainties to thermochemical data. In: Rossini FD, editor. Experimental thermochemistry. Vol 1. New York: Interscience; 1956.

  26. Olofsson G. Assigment of uncertainties. In: Sunner S, Månsson M, editors. Combustion calorimetry. Oxford: Pergamon; 1979.

  27. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere; 1989.

  28. Kabli S, Van Beelen ESE, Ingemann S, Henriksen L, Hammerum S. The proton affinities of saturated and unsaturated heterocyclic molecules. Int J Mass Spectrom. 2006;249–250:370–8.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Fundação para a Ciência e a Tecnologia, F.C.T., Lisbon, Portugal, and to FEDER for financial support to Centro de Investigação em Química da Universidade do Porto (CIQ-U.P.). L.M.P.F.A. thanks F.C.T. and the European Social Fund (ESF) under the Community Support Framework (CSF) for the award of a post-doctoral fellowship (SFRH/BPD/25490/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. V. Ribeiro da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro da Silva, M.A.V., Amaral, L.M.P.F. Standard molar enthalpies of formation of some methylfuran derivatives. J Therm Anal Calorim 100, 375–380 (2010). https://doi.org/10.1007/s10973-009-0636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0636-9

Keywords

Navigation