Skip to main content
Log in

Thermochemistry of paracetamol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard (p o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K: \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} \) and \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} . \) From the obtained \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) \) value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known polymorphs of paracetamol (forms II and III), at 298.15 K: \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} \) and \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} . \) The proposed \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) \) value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the literature, and a re-evaluated enthalpy of formation of acetanilide, \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} , \) were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic consistency between the \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \)(C8H9O2N, g) value obtained in this study and the remaining experimental data used in the \( \Updelta_{\text{r}} H_{\text{m}}^{\text{o}} \) calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Singh TP, Bhat TN, Vijayan M. Crystallization and crystal data of acetaminophen and metamizol. Curr Sci 1973;42:384.

    CAS  Google Scholar 

  2. Haisa M, Kashino S, Kawai R, Maeda H. The monoclinic form of p-hydroxyacetanilide. Acta Crystallogr B. 1976;32:1283–5.

    Article  Google Scholar 

  3. Wilson CC, Shankland N, Florence AJ, Frampton CS. Single-crystal neutron diffraction of bio-active small molecules. Physica B. 1997;234:84–6.

    Article  Google Scholar 

  4. Wilson CC. Neutron diffraction of p-hydroxyacetanilide (Paracetamol): libration or disorder of the methyl group at 100 K. J Mol Struct. 1997;405:207–17.

    Article  CAS  Google Scholar 

  5. Naumov DY, Vasilchenko MA, Howard JAK. The monoclinic form of acetaminophen at 150 K. Acta Crystallogr C. 1998;54:653–5.

    Article  Google Scholar 

  6. Nichols G, Frampton CS. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J Pharm Sci. 1998;87:684–93.

    Article  CAS  Google Scholar 

  7. Shakhtshneider TP, Boldyreva EV, Vasilchenko MA, Ahsbahs H, Uchtmann H. Anisotropy of crystal structure distortion in organic molecular crystals of drugs induced by hydrostatic compression. J Struct Chem. 1999;40:892–8.

    Article  CAS  Google Scholar 

  8. Boldyreva EV, Shakhtschneider TP, Vasilchenko MA, Ahsbahs H, Uchtmann H. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures. Acta Crystallogr B. 2000;56:299–309.

    Article  Google Scholar 

  9. Wilson CC. Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction. Z Kristallogr. 2000;215:693–701.

    Article  CAS  Google Scholar 

  10. Haisa M, Kashino S, Maeda H. The orthorhombic form of p-hydroxyacetanilide. Acta Crystallogr B. 1974;30:2510–2.

    Article  Google Scholar 

  11. Drebushchak TN, Boldyreva EV. Variable temperature (100–360 K) single-crystal X-ray diffraction study of the orthorhombic polymorph of paracetamol (p-hydroxyacetanilide). Z Kristallogr. 2004;219:506–12.

    Article  CAS  Google Scholar 

  12. Peterson ML, Morissette SL, McNulty C, Goldsweig A, Shaw P, LeQuesne M, et al. Iterative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III. J Am Chem Soc. 2002;124:10958–9.

    Article  CAS  Google Scholar 

  13. Burley JC, Duer MJ, Stein RS, Vrcelj RM. Enforcing Ostwald’s rule of stages: isolation of paracetamol forms III and II. Eur J Pharm Sci. 2007;31:271–6.

    Article  CAS  Google Scholar 

  14. Burger A. On the interpretation of polymorphism investigations. Acta Pharm Technol. 1982;28:1–20.

    CAS  Google Scholar 

  15. Di Martino P, Conflant P, Drache M, Huvenne JP, Guyot-Hermann AM. Preparation and physical characterization of forms II and III of paracetamol. J Therm Anal. 1997;48:447–58.

    Article  CAS  Google Scholar 

  16. Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YA, Drebushchak TN. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J Therm Anal Calorim. 2004;77:607–23.

    Article  CAS  Google Scholar 

  17. Espeau P, Céolin R, Tamarit JL, Prrin MA, Gauchi JP, Leveiller F. Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams. J Pharm Sci. 2005;94:524–39.

    Article  CAS  Google Scholar 

  18. Perlovich GL, Volkova TV, Bauer-Brandl A. Polymorphism of paracetamol relative stability of the monoclinic and orthorhombic phase revisited by sublimation and solution calorimetry. J Therm Anal Calorim. 2007;89:767–74.

    Article  CAS  Google Scholar 

  19. Yu L. Inferring thermodynamic stability relationship of polymorphs from melting data. J Pharm Sci. 1995;84:966–74.

    Article  CAS  Google Scholar 

  20. Sacchetti M. Thermodynamic analysis of DSC data for acetaminophen polymorphs. J Therm Anal Calorim. 2001;63:345–50.

    Article  CAS  Google Scholar 

  21. Xu F, Sun LX, Tan ZC, Liang JG, Zhang T. Adiabatic calorimetry and thermal analysis on acetaminophen. J Therm Anal Calorim. 2006;83:187–91.

    Article  CAS  Google Scholar 

  22. Cox JD, Pilcher G. Thermochemistry of organic and organometallic compounds. London: Academic Press; 1970.

    Google Scholar 

  23. Pedley JB. Thermochemical data and structures of organic compounds. College Station, TX/Boca Raton: Thermodynamics Research Center/CRC Press; 1994.

    Google Scholar 

  24. Laugier J, Bochu B. Checkcell. http://www.ccp14.ac.uk/tutorial/Imgp.

  25. Moura Ramos JJ, Taveira-Marques R, Diogo HP. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition. J Pharm Sci. 2004;93:1503–7.

    Article  CAS  Google Scholar 

  26. Saito T, Hayamizu K, Yanagisawa M, Yamamoto O, Wasada N, Someno K, Kinugasa S, Tanabe K, Tamura T, Hiraishi J. Spectral Data Base for Organic Compounds (SDBS). http://www.aist.go.jp/RIODB.

  27. Jagannathan NR. High resolution solid state 13C NMR study of acetaminophen: a common analgesic drug. Curr Sci. 1987;56:827–30.

    CAS  Google Scholar 

  28. Lin SY, Wang SL, Cheng YD. Thermally induced structural changes of acetaminophen in phase transition between the solid and liquid states monitored by combination analysis of FT-IR/DSC microscopic system. J Phys Chem Solids. 2000;61:1889–93.

    Article  CAS  Google Scholar 

  29. Moynihan HA, O′Hare IP. Spectroscopic characterisation of the monoclinic and orthorhombic forms of paracetamol. Int J Pharm. 2002;247:179–85.

    Article  CAS  Google Scholar 

  30. Pinto SS, Diogo HP, Minas da Piedade ME. Enthalpy of formation of monoclinic 2-hydroxybenzoic acid. J Chem Thermodyn. 2003;35:177–88.

    Article  CAS  Google Scholar 

  31. Calado JCG, Dias AR, Minas da Piedade ME, Martinho Simões JA. Standard enthalpy of sublimation of [Mo(η5-C2H5)(CH3)2]. A reevaluation of Mo-CH3 and W-CH3 bond enthalpy contributions. Rev Port Quim. 1980;22:57–62.

    Google Scholar 

  32. Diogo HP, Minas da Piedade ME, Fernandes AC, Martinho Simões JA, Ribeiro da Silva MAV, Monte MJS. The enthalpy of sublimation of diphenylacetylene from Knudsen effusion studies. Thermochim Acta. 1993;228:15–22.

    Article  CAS  Google Scholar 

  33. Diogo HP, Minas da Piedade ME, Gonçalves JM, Monte MJS, Ribeiro da Silva MAV. Enthalpies of Sublimation of M(η5-C5H5)2Cl2 (M = Ti, Zr, Hf, V, Nb, W) Complexes. Eur J Inorg Chem 2001:257–62.

  34. Kiyobayashi T, Minas da Piedade ME. The standard molar enthalpy of sublimation of η5-bis-pentamethylcyclopentadienyl iron measured with an electrically calibrated vacuum-drop sublimation microcalorimetric apparatus. J Chem Thermodyn. 2001;33:11–21.

    Article  CAS  Google Scholar 

  35. Bernardes CES, Santos LMNBF, Minas da Piedade ME. A new calorimetric system to measure heat capacities of solids by the drop method. Meas Sci Technol. 2006;17:1405–8.

    Article  CAS  Google Scholar 

  36. Koch W, Holthausen MCA. Chemist’s guide to density functional theory. 2nd ed. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  37. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999;110:2822–7.

    Article  CAS  Google Scholar 

  38. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys. 2000;112:6532–42.

    Article  CAS  Google Scholar 

  39. Becke AD. Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  41. Dunning TH. Gaussian-basis sets for use in correlated molecular calculations.1. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007–23.

    Article  CAS  Google Scholar 

  42. Wilson AK, Woon DE, Peterson KA, Dunning TH. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys. 1999;110:7667–76.

    Article  CAS  Google Scholar 

  43. Woon DE, Dunning TH. Gaussian-basis sets for use in correlated molecular calculations.3. The atoms aluminum through argon. J Chem Phys. 1993;98:1358–71.

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03. Revision C.03. Wallingford: Gaussian, Inc; 2004.

    Google Scholar 

  45. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem. 2006;78:2051–66.

    Article  CAS  Google Scholar 

  46. Martinho Simões JA, Minas da Piedade ME. Molecular energetics. New York: Oxford university Press; 2008.

    Google Scholar 

  47. Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol 1. New York: Interscience; 1956.

    Google Scholar 

  48. Wagman DD, Evans WH, Parker VB, Schumm RH, Hallow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 1982;Suppl 2:11.

    Google Scholar 

  49. Coops J, Jessup RS, van Nes K. Calibration of calorimeters for reactions in a bomb at a constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol 1. New York: Interscience; 1956.

    Google Scholar 

  50. Bjellerup L. On the accuracy of heat of combustion data obtained with a precision moving-bomb calorimetric method for organic bromine compounds. Acta Chem Scand. 1961;15:121–40.

    Article  CAS  Google Scholar 

  51. Olofsson G. Assignment of uncertainties. In: Sunner S, Månsson M, editors. Experimental chemical thermodynamics, vol 1. Oxford: Pergamon Press; 1979. p. 137.

    Google Scholar 

  52. Cox JD, Wagman DD, Medvedev VA. Codata key values for thermodynamics. New York: Hemisphere; 1989.

    Google Scholar 

  53. Pascual-Ahuir JL, Silla E, Tunon I. GEPOL93. http://server.ccl.net/cca/software/SOURCES/FORTRAN/molecular_surface/gepol93/.

  54. Korn GA, Korn TM. Mathematical handbook for scientists and engineers. New York: McGraw-Hill; 1968.

    Google Scholar 

  55. Irikura KK, Frurip DJ. Computational thermochemistry. Prediction and estimation of molecular thermodynamics. Washington: ACS Symposium Series No. 677; 1998.

  56. Computational Chemistry Comparison and Benchmark DataBase. In: NIST Standard Reference Database 101 (Release 14). Gaithersburg: National Institute of Standards and Technology; 2006.

  57. Perlovich GL, Volkova TV, Bauer-Brandl A. Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by paracetamol, acetanilide, and phenacetin. J Pharm Sci. 2006;95:2158–69.

    Article  CAS  Google Scholar 

  58. Williams D, Wilson D, Storey R, Basford P. Vapour pressure determination of pharmaceutical powders. In: 7th international conference/workshop on pharmacy and applied physical chemistry. Innsbruck; 2003.

  59. Bernardes CES, Piedade MFM, Minas da Piedade ME. Polymorphism in 4′-Hydroxyacetophenone: structure and energetics. Cryst Growth Des. 2008;8:2419–30.

    Article  CAS  Google Scholar 

  60. Johnson WH. Enthalpies of combustion and formation of acetanilide and urea. J Res Nat Bur Stand. 1975;79A:487–91.

    CAS  Google Scholar 

  61. Atkins PW, de Paula J. Physical chemistry. 8th ed. Oxford: Oxford University Press; 2006.

    Google Scholar 

  62. Marsh KN. Recommended reference materials for the realization of physicochemical properties. Oxford: IUPAC–Blackwell Scientific Publications; 1987.

    Google Scholar 

  63. Nilsson SO, Wadsö I. A flow-microcalorimetric vessel for solution of slightly soluble solids. J Chem Thermodyn. 1986;18:1125–33.

    Article  CAS  Google Scholar 

  64. Domalski ES, Hearing ED. Heat capacities and entropies of organic compounds in the condensed form. J Phys Chem Ref Data. 1996;25:1–525.

    Article  CAS  Google Scholar 

  65. Satoh S, Sogabe T. The heat capacities of some organic compounds containing nitrogen and the atomic heat of nitrogen 1. Sci Pap Inst Phys Chem Res Tokyo. 1941;38:197–203.

    Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal. A PhD. grant from FCT is gratefully acknowledged by R. Picciochi (SFRH/BD/36029/2007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hermínio P. Diogo or Manuel E. Minas da Piedade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picciochi, R., Diogo, H.P. & Minas da Piedade, M.E. Thermochemistry of paracetamol. J Therm Anal Calorim 100, 391–401 (2010). https://doi.org/10.1007/s10973-009-0634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0634-y

Keywords

Navigation