Skip to main content
Log in

Thermodynamic Characteristics of Lithium Pivalate according to High-Temperature Mass Spectrometry Data

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The vaporization of lithium pivalate (CH3)3CCOOLi (LiPiv) was studied by the Knudsen effusion method with the mass spectral analysis of the gas phase. The saturated vapor consisted of polynuclear molecules (LiPiv)n, dominated by (LiPiv)2 and (LiPiv)4 molecules. The absolute values of the partial pressures of these molecules and their dependence on temperature were calculated. The standard enthalpies of sublimation of the main components of the saturated vapor were determined to be \({{\Delta }_{s}}H_{{298}}^{^\circ }\)(LiPiv)2 = 174.2 ± 6.6 kJ/mol and \({{\Delta }_{s}}H_{{298}}^{^\circ }\)(LiPiv)4 = 195.7 ± 4.5 kJ/mol. The enthalpies of dissociation of the dimeric molecules into the monomeric molecules and of the tetrameric molecules into the dimeric molecules were calculated by the second and third laws of thermodynamics; the average values of these enthalpies are \({{\Delta }_{D}}H_{{298}}^{^\circ }\)(LiPiv)2 = 175.8 ± 13.5 kJ/mol and \({{\Delta }_{D}}H_{{298}}^{^\circ }\)(LiPiv)4 = 155.2 ± 10.0 kJ/mol. The standard enthalpies of formation of LiPiv in the condensed and gas phase were estimated from the known thermodynamic characteristics of lithium acetate and radicals of acetic and pivalic acids: \({{\Delta }_{f}}H_{{298.15}}^{^\circ }\)(LiPivsolid) ≤ –804 kJ/mol, \({{\Delta }_{f}}H_{{298.15}}^{^\circ }\)(LiPivgas) ≤ –627 kJ/kmol, \({{\Delta }_{f}}H_{{298.15}}^{^\circ }\)((LiPiv)2(gas)) ≤ –1430 kJ/mol, and \({{\Delta }_{f}}H_{{298.15}}^{^\circ }\)((LiPiv)4(gas)) ≤ –3017 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. N. J. Dudney, Interface (The Electrochemical Society) 17, 44 (2008).

    CAS  Google Scholar 

  2. H. Nishide and K. Oyaizu, Science 319, 737 (2008). https://doi.org/10.1126/1151831

    Article  CAS  PubMed  Google Scholar 

  3. W.-G. Choi and S.-G. Yoon, J. Power Sources 125, 236 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.014

    Article  CAS  Google Scholar 

  4. T. L. Kulova and A. M. Skundin, Elektrokhim. Energ. 9 (2), 57.

  5. B. Wang, J. B. Bates, F. X. Hart, et al., J. Electrochem. Soc. 143, 3203 (1996). https://doi.org/10.1149/1.1837188

    Article  CAS  Google Scholar 

  6. J. B. Bates, N. J. Dudney, B. J. Neudecker, et al., Solid State Ionics 135, 33 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1

    Article  CAS  Google Scholar 

  7. J. B. Bates, N. J. Dudney, B. J. Neudecker, et al., J. Electrochem. Soc. 147, 59 (2000). https://doi.org/10.1149/1.1393157

    Article  CAS  Google Scholar 

  8. J. B. Bates, N. J. Dudney, G. R. Gruzalski, et al., J. Power Sources 43, 103 (1993). https://doi.org/10.1016/0378-7753(93)80106-Y

    Article  CAS  Google Scholar 

  9. X. Yu, J. B. Bates, G. E. Jellison, et al., J. Electrochem. Soc. 144, 524 (1997). https://doi.org/10.1149/1.1837443

    Article  CAS  Google Scholar 

  10. N. M. Khoretonenko, Candidate’s Dissertation in Chemistry (Moscow, 1998).

  11. E. White V, Org. Mass Spectrom. 13, 495 (1978). https://doi.org/10.1002/oms.1210130903

    Article  Google Scholar 

  12. K. Matsumoto, Y. Kosugi, M. Yanagisawa, et al., Org. Mass Spectrom. 15, 606 (1980). https://doi.org/10.1002/oms.1210151203

    Article  CAS  Google Scholar 

  13. Y. Cao and K. L. Busch, J. Inorg. Chem. 33, 3970 (1994). https://doi.org/10.1021/ic00096a022

    Article  CAS  Google Scholar 

  14. E. N. Zorina-Tikhonova, D. S. Yambulatov, M. A. Kiskin, et al., Russ. J. Coord. Chem. 46, 75 (2020). https://doi.org/10.1134/S1070328420020104

    Article  CAS  Google Scholar 

  15. D. B. Kayumova, I. P. Malkerova, M. A. Shmelev, et al., Russ. J. Inorg. Chem. 64, 125 (2019). https://doi.org/10.1134/S0036023619010121

    Article  CAS  Google Scholar 

  16. N. A. Gribchenkova and A. S. Alikhanyan, J. Alloys Compd. 778, 77 (2019). https://doi.org/10.1016/j.jallcom.2018.11.136

    Article  CAS  Google Scholar 

  17. L. N. Gorokhov, Vestn. Mosk. Univ., Ser. Mat., Mekh., Astron., Fiz., Khim., p. 231 (1958).

    Google Scholar 

  18. L. N. Sidorov, M. V. Korobov, and L. V. Zhuravleva, Mass Spectral Thermodynamic Studies (MGU, Moscow, 1985) [in Russian].

    Google Scholar 

  19. J. W. Otvose and D. P. Stevenson, J. Am. Chem. Soc. 78, 546 (1956). https://doi.org/10.1021/ja01584a009

    Article  Google Scholar 

  20. M. Guido and G. Gigli, High Temp. Sci. 7, 122 (1975).

    CAS  Google Scholar 

  21. R. T. Meyer and A. W. Lynch, High Temp. Sci. 5, 192 (1973).

    CAS  Google Scholar 

  22. Thermodynamic Properties of Individual Substances: Handbook (Nauka, Moscow, 1982), Vol. 4, Book 2 [in Russian].

  23. N. V. Gogoleva, G. N. Kuznetsova, M. A. Shmelev, et al., J. Solid State Chem. 294, 121842 (2020). https://doi.org/10.1016/j.jssc.2020.121842

    Article  CAS  Google Scholar 

  24. V. A. Lukyanova, T. S. Papina, K. V. Didenko, et al., J. Therm. Anal. Calorim. 92, 743 (2008). https://doi.org/10.1007/s10973-008-9019-x

    Article  CAS  Google Scholar 

  25. L. A. Rudnitskii, Zh. Fiz. Khim. 35, 1853 (1961).

    Google Scholar 

  26. P. Gray and J. C. J. Thynne, Nature (Engl.), 191, 1357 (1961). https://doi.org/10.1038/1911357a0

  27. F. J. Martínez Casado, M. Ramos Riesco, M. I. Redondo, et al., Cryst. Growth Des., 11, 1021 (2011).https://doi.org/10.1021/cg1010133

  28. F. J. Martínez Casado, M. Ramos Riesco, M. V. Garcia Perez, et al., J. Phys. Chem. B 113, 12896 (2009). https://doi.org/10.1021/jp9047715

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The elemental analysis was performed using equipment of the Center for Common Use of Physical Methods of Investigation of Substances and Materials, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported under a state assignment for basic scientific research for the Kurnakov Institute of General and Inorganic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Alikhanyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayumova, D.B., Malkerova, I.P., Kiskin, M.A. et al. Thermodynamic Characteristics of Lithium Pivalate according to High-Temperature Mass Spectrometry Data. Russ. J. Inorg. Chem. 66, 868–873 (2021). https://doi.org/10.1134/S0036023621060127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060127

Keywords:

Navigation