Skip to main content
Log in

Thermoanalytical studies of natural potassium, sodium and ammonium alunites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dynamic and controlled rate thermal analysis (CRTA) has been used to characterise alunites of formula [M(Al)3(SO4)2(OH)6] where M+ is the cations K+, Na+ or NH4 +. Thermal decomposition occurs in a series of steps: (a) dehydration, (b) well-defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Serna CJ, Parada Cortina C, Garcia Ramos JV. Infrared and Raman study of alunite-jarosite compounds. Spectrochim Acta. 1986;42A:729–34.

    CAS  Google Scholar 

  2. Tsutsumi S, Otsuka R, Thermal studies of the alunite-natroalunite series, (K,Na)Al3(SO4)2(OH)6. In: Proceedings of the 5th international conference on thermal analysis; 1977. p. 456–457.

  3. Alias Perez LJ, Girella F. Differential thermal analysis of jarosite-alunite solid solutions and mixtures. Estudios Geologicos (Madrid). 1968;24:79–83.

    CAS  Google Scholar 

  4. Atencio D, Hypolito R. Fe2O3-SO3-H2O system: mineralogical aspects. Anais da Associacao Brasileira de Quimica. 1993;41–42:32–8.

    Google Scholar 

  5. Bishop JL, Murad E. The visible and infrared spectral properties of jarosite and alunite. Am Mineral. 2005;90:1100–7.

    Article  CAS  Google Scholar 

  6. Cocco G. Differential thermal analysis of some sulfate minerals. Period Miner. 1952;21:103–38.

    CAS  Google Scholar 

  7. Frost RL, Wain D, Martens WN, Locke AC, Martinez-Frias J, Rull F. Thermal decomposition and X-ray diffraction of sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera, Spain. Thermochim Acta. 2007;460:9–14.

    Article  CAS  Google Scholar 

  8. Frost RL, Weier ML, Kloprogge JT, Rull F, Martinez-Frias J. Raman spectroscopy of halotrichite from Jaroso, Spain. Spectrochim Acta. 2005;62:176–80.

    Article  Google Scholar 

  9. Frost RL, Weier ML, Martens W. Thermal decomposition of jarosites of potassium, sodium and lead. J Therm Anal Calorim. 2005;82:115–8.

    Article  CAS  Google Scholar 

  10. Frost RL, Wills RA, Martens W, Weier W, Reddy BJ. NIR spectroscopy of selected iron(II) and iron(III) sulphates. Spectrochim Acta. 2005;62A:42–60.

    CAS  Google Scholar 

  11. Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.

    Article  CAS  Google Scholar 

  12. Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.

    Article  CAS  Google Scholar 

  13. Carmody O, Frost R, Xi Y, Kokot S. Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008;91:809–16.

    Article  CAS  Google Scholar 

  14. Frost RL, Locke A, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2+(C2O4)2·2H2O. J Therm Anal Calorim. 2008;93:993–7.

    Article  CAS  Google Scholar 

  15. Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.

    Article  CAS  Google Scholar 

  16. Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92:887–92.

    Article  CAS  Google Scholar 

  17. Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91:267–74.

    Article  CAS  Google Scholar 

  18. Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91:855–60.

    Article  CAS  Google Scholar 

  19. Palmer SJ, Frost RL, Nguyen T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008;92:879–86.

    Article  CAS  Google Scholar 

  20. Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.

    Article  Google Scholar 

  21. Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    Article  CAS  Google Scholar 

  22. Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.

    Article  CAS  Google Scholar 

  23. Zhao Y, Frost RL, Vagvolgyi V, Waclawik ER, Kristof J, Horvath E. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008;94:219–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Hungarian Scientific Research Fund (OTKA) under Grant No. K62175. The financial and infra-structure support of the Queensland University of Technology Inorganic Materials Research Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristóf, J., Frost, R.L., Palmer, S.J. et al. Thermoanalytical studies of natural potassium, sodium and ammonium alunites. J Therm Anal Calorim 100, 961–966 (2010). https://doi.org/10.1007/s10973-009-0581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0581-7

Keywords

Navigation