Skip to main content
Log in

Cation distribution in manganese cobaltite spinels Co3−x Mn x O4 (0 ≤ x ≤ 1) determined by thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis was used in order to study the reduction in air of submicronic powders of Co3−x Mn x O4 spinels, with 0 ≤ x ≤ 1. For x = 0 (i.e. Co3O4), cation reduction occurred in a single step. It involved the CoIII ions at the octahedral sites, which were reduced to Co2+ on producing CoO. For 0 < x ≤ 1, the reduction occurred in two stages at increasing temperature with increasing amounts of manganese. The first step corresponded to the reduction of octahedral CoIII ions and the second was attributed to the reduction of octahedral Mn4+ ions to Mn3+. From the individual weight losses and the electrical neutrality of the lattice, the CoIII and Mn4+ ion concentrations were calculated. The distribution of cobalt and manganese ions present on each crystallographic site of the spinel was determined. In contrast to most previous studies that took into account either CoIII and Mn3+ or Co2+, CoIII and Mn4+ only, our thermal analysis study showed that Co2+/CoIII and Mn3+/Mn4+ pairs occupy the octahedral sites. These results were used to explain the resistivity measurements carried out on dense ceramics prepared from our powders sintered at low temperature (700–750 °C) in a Spark Plasma Sintering apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kolomiets BT, Sheftel J, Kurlina E. Electrical properties of some compound oxide semiconductors. Sov Phys Tech Phys. 1957;2:40–58.

    CAS  Google Scholar 

  2. Jabry EH, Rousset A, Lagrange A. Preparation and characterization of manganese and cobalt based semiconducting ceramics. Phase Transit. 1988;13:63–71.

    Article  CAS  Google Scholar 

  3. Rios E, Gautier JL, Poillerat G, Chartier P. Mixed valency spinel oxides of transition metals and electrocatalysis : case of the Mn x Co3−x O4 system. Electrochim Acta. 1998;44:1491–7.

    Article  CAS  Google Scholar 

  4. Restovic A, Rios E, Barbato S, Ortiz J, Gautier JL. Oxygen reduction in alkaline medium at thin Mn x Co3−x O4 (0 ≤ x ≤ 1) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. J Electroanal Chem. 2002;522:141–51.

    Article  CAS  Google Scholar 

  5. Yang Z, Xia GG, Li XH, Stevenson JW. (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int J Hydrogen Energy. 2006;32:3648–54.

    Article  Google Scholar 

  6. Hagen A, Mikkelsen L. Xanes study of the oxidation state and coordination environment of manganese, chromium and cobalt in spinel type materials. Proceedings of the 26th Risø international symposium on material science: Solid State Electrochem 2005; p. 197–202.

  7. Philip J, Kutty TRN. Colossal magnetoresistance of oxide spinels Co x Mn3−x O4. Mater Lett. 1999;39:311–7.

    Article  CAS  Google Scholar 

  8. Buhl R. Manganites spinelles purs d’éléments de transition préparations et structures cristallographiques. J Phys Chem Solids. 1969;30:805–12.

    Article  CAS  Google Scholar 

  9. Martin de Vidales JL, Vila E, Rojas RM, Garcia-Martinez D. Thermal behavior in air and reactivity in acid medium of cobalt manganese spinels Mn x Co3−x O4 (1 ≤ x ≤ 3) synthesized at low temperature. Chem Mater. 1995;7:1716–21.

    Article  CAS  Google Scholar 

  10. Boucher B, Buhl R, Perrin M. Magnetic structure of cobalt manganite by neutron diffraction. J Appl Phys. 1968;39:632–4.

    Article  CAS  Google Scholar 

  11. Gautier JL, Cabezas C, Barbato S. Réduction électrochimique de MnCo2O4 préparé à basse et haute température. Electrochim Acta. 1981;26:1377–82.

    Article  CAS  Google Scholar 

  12. Vasil’ev GP, Pakhomov LA, Ryabova LA. Structural and electrical properties of d.c. sputtered MnCo2O4 films. Thin Solid Films. 1980;66:119–24.

    Article  Google Scholar 

  13. Borges FMM, Melo DMA, Camara MSA, Martinelli AE, Soares V, de Araujo JH, et al. Magnetic behavior of nanocristalline MnCo2O4 spinels. J Magn Magn Mater. 2006;302:273–7.

    Article  CAS  Google Scholar 

  14. Boucher B, Buhl R, Di Bella R, Perrin M. Etude par des mesures de diffraction de neutrons et de magnétisme des propriétés cristallines et magnétiques de composés cubiques spinelles Co3−x Mn x O4 (0, 6 ≤ x ≤ 1, 2). J Phys. 1970;31:113–9.

    Article  CAS  Google Scholar 

  15. Naka S, Inagaki M, Tanaka T. On the formation of solid solution in Co3−xMn x O4 system. J Mater Sci. 1972;7:441–4.

    Article  CAS  Google Scholar 

  16. Wickham DG, Croft WJ. Crystallographic and magnetic properties of several spinels containing trivalent manganese. J Phys Chem Solids. 1958;7:351–60.

    Article  CAS  Google Scholar 

  17. Aoki J. Tetragonal distorsion of the oxide Spinels containing cobalt and manganese. J Phys Soc Jpn. 1962;17:53–61.

    Article  CAS  Google Scholar 

  18. Gorter EW. Saturation magnetization and crystal chemistry of ferrimagnetic oxides. I. II. Theory of ferrimagnetism. Philips Res Rep. 1954;9:295–365.

    CAS  Google Scholar 

  19. Cossee P. Structure and magnetic properties of Co3O4 and ZnCo2O4. Recl Trav Chim Pays-Bas Belg. 1956;75:1089–96.

    Article  CAS  Google Scholar 

  20. Roth WL. The magnetic structure of Co3O4. J Phys Chem Solids. 1964;25:1–10.

    Article  CAS  Google Scholar 

  21. Rousset A, Clerc L, Vajpei AC, Gillot B, Jemmali F. Thermoanalytical studies on cation distribution in submicronic titanomagnetites. J Therm Anal Cal. 1987;32:845–55.

    Article  CAS  Google Scholar 

  22. Rousset A, Tailhades Ph, Gillot B. Relations structure-réactivité dans des ferrites submicroniques à valence mixte. Ann Chim Fr. 1989;14:187–99.

    CAS  Google Scholar 

  23. Domenichini B, Gillot B, Tailhades Ph, Bouet L, Rousset BA, Perriat P. Cationic distribution and oxidation kinetics of trivalent molybdenum ions in submicron molybdenum substituted magnetites. Solid State Ion. 1992;58:61–9.

    Article  CAS  Google Scholar 

  24. Bordeneuve H, Guillemet-Fritsch S, Rousset A, Schuurman S, Poulain V. Structure and electrical properties of single phase cobalt manganese oxide spinels Mn3−x Co x O4 sintered classically and by Spark Plasma Sintering. J Solid State Chem. 2009;182:396–401.

    Article  CAS  Google Scholar 

  25. Aukrust E, Muan A. Thermodynamic properties of solid solutions with spinel type structure. The system Co3O4–Mn3O4. Trans Metall Soc AIME. 1964;230:378–82.

    CAS  Google Scholar 

  26. Rousset A, Lagrange A, Brieu M, Couderc JJ, Legros R. Influence de la microstructure sur la stabilité électrique des thermistances CTN. J Phys III. 1993;3:833–45.

    CAS  Google Scholar 

  27. Brieu M, Couderc JJ, Rousset A, Legros RJ. TEM characterization of nickel and nickel–cobalt manganite ceramics. Eur Ceram Soc. 1993;11:171–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Vishay BCcomponents Company based in Belgium for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tenailleau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordeneuve, H., Rousset, A., Tenailleau, C. et al. Cation distribution in manganese cobaltite spinels Co3−x Mn x O4 (0 ≤ x ≤ 1) determined by thermal analysis. J Therm Anal Calorim 101, 137–142 (2010). https://doi.org/10.1007/s10973-009-0557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0557-7

Keywords

Navigation