Skip to main content
Log in

Structural, magnetic, and electrical properties of manganese-substituted magnesium chromate spinel structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese-substituted magnesium chromate spinel structure with composition Mg1−xMnxCr2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) was synthesized by sol–gel auto-combustion route. The polycrystalline powder was characterized using XRD, TGA/DTA, SEM/EDAX, TEM, and FTIR spectroscopy. XRD analysis unveiled the single cubic spinel structure without any additional peak and the lattice constant upsurges with the amount of manganese content were augmented. Thermal analysis reveals the decomposition of organic moieties at different steps and the stability of the spinel structure. Furthermore, SEM measurement shows that grain size lies between 1.74 to 3.17 µm, and EDAX measurement demonstrates stoichiometry according to its composition. TEM also reveals the average particle size around 20 nm. Continuous increase in saturation magnetization and magnetic movement gives information about Mg2+ completely replaced by Mn2+ in A site. At the same time, B site Cr3+ is not interfering with the A site in this particular situation. A persistent decrease in electrical properties and the increase in magnetic movement concerning temperature indicate the replacement of Mg2+ by Mn2+ in A site, while B site Cr3+ is unaffected by Mn2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.H. Taffa, R. Dillert, A.C. Ulpe, K.C. Bauerfeind, T. Bredow, D.W. Bahnemann, M. Wark, J. Photon. Energy 7, 012009 (2016)

    Article  Google Scholar 

  2. A. Azhari, F. Golestani-Fard, H. Sarpoolaky, J. Eur. Ceram. Soc. 29, 2679–2684 (2009)

    Article  CAS  Google Scholar 

  3. Y. Hinatsu, Y. Doi, J. Solid State Chem. 220, 22–27 (2014)

    Article  CAS  Google Scholar 

  4. L. Mao, H. Cui, C. Miao, H. An, J. Zhai, Q. Li, J. Mater. Cycles Waste Manage. 18, 573–581 (2016)

    Article  CAS  Google Scholar 

  5. V. D’Ippolito, G.B. Andreozzi, D. Bersani, P.P. Lottici, J. Raman Spectrosc. 46, 1255–1264 (2015)

    Article  CAS  Google Scholar 

  6. A. Fernández, H. Galleguillos, F. Pérez, Sol. Energy 109, 125–134 (2014)

    Article  Google Scholar 

  7. K. Sadhana, S.R. Murthy, K. Praveena, Mater. Sci. Semicond. Process. 34, 305–311 (2015)

    Article  CAS  Google Scholar 

  8. S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Mater. Sci. Eng. C 97, 954–965 (2019)

    Article  CAS  Google Scholar 

  9. R.S. Diggikar, S.P. Deshmukh, T.S. Thopate, S.R. Kshirsagar, ACS Omega 4, 5741–5749 (2019)

    Article  CAS  Google Scholar 

  10. E. Jafarnejad, S. Khanahmadzadeh, F. Ghanbary, M. Enhessari, Curr. Chem. Lett. 5, 173–180 (2016)

    Article  Google Scholar 

  11. A.G. Dhodamani, K.V. More, S.B. Mullani, S.P. Deshmukh, V.B. Koli, D.K. Panda, S.D. Delekar, ChemistrySelect 5, 218–230 (2020)

    Article  CAS  Google Scholar 

  12. S.M. Patil, S.P. Deshmukh, A.G. Dhodamani, K.V. More, S.D. Delekar, Curr. Org. Chem. 21, 821–833 (2017)

    Article  CAS  Google Scholar 

  13. M. Ejaz, A. Mahmood, M.A. Khan, A. Hussain, A. Sultan, A. Mahmood, A.H. Chughtai, M.N. Ashiq, M.F. Warsi, I. Shakir, J. Magn. Magn. Mater. 404, 257–264 (2016)

    Article  CAS  Google Scholar 

  14. N. Lotfian, A. Nourbakhsh, S.N. Mirsattari, A. Saberi, K.D. Mackenzie, Ceram. Int. 46, 747–754 (2020)

    Article  CAS  Google Scholar 

  15. H.R. Zargar, C. Oprea, G. Oprea, T. Troczynski, Ceram. Int. 38, 6235–6241 (2012)

    Article  CAS  Google Scholar 

  16. S.P. Deshmukh, V.B. Koli, A.G. Dhodamani, S.M. Patil, V.S. Ghodake, S.D. Delekar, ChemistrySelect 6, 113–122 (2021)

    Article  CAS  Google Scholar 

  17. S. Seif, S. Fatemi, O. Tavakoli, H. Bahmanyar, J. Supercrit. Fluids 114, 32–45 (2016)

    Article  CAS  Google Scholar 

  18. T.P. Putra, M. Yonemura, S. Torii, T. Ishigaki, T. Kamiyama, Solid State Ionics 262, 83–87 (2014)

    Article  CAS  Google Scholar 

  19. L.H. Huizhong, W. Jianxiu, Refractories 5, 002 (2003)

    Google Scholar 

  20. A. Gismelseed, K. Mohammed, A. Al-Rawas, A. Yousif, H. Widatallah, M. Elzain, Hyperfine Interact. 226, 57–63 (2014)

    Article  CAS  Google Scholar 

  21. K. Khalaf, A. Al-Rawas, H. Widatallah, K. Al-Rashdi, A. Sellai, A. Gismelseed, M. Hashim, S. Jameel, M. Al-Ruqeishi, K. Al-Riyami, J. Alloys Compd. 657, 733–747 (2016)

    Article  CAS  Google Scholar 

  22. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. Hunge, K.Y. Rajpure, C.H. Bhosale, Mater. Res. Bull. 67, 47–54 (2015)

    Article  CAS  Google Scholar 

  23. S. Kumbhar, M. Mahadik, V. Mohite, Y. Hunge, P. Chougule, K. Rajpure, C. Bhosale, J. Mater. Sci. 27, 3799–3811 (2016)

    CAS  Google Scholar 

  24. S. Kumbhar, M. Mahadik, P. Chougule, V. Mohite, Y. Hunge, K. Rajpure, A. Moholkar, C. Bhosale, Mater. Sci. 33, 852–861 (2015)

    Google Scholar 

  25. F. Nesa, A. Zakaria, M.S. Khan, S. Yunus, A. Das, S.-G. Eriksson, M. Khan, M. Hakim, (2012)

  26. A. Mali, T. Wandre, K. Sanadi, A. Tapase, I. Mulla, P. Hankare, J. Mater. Sci. 27, 613–619 (2016)

    CAS  Google Scholar 

  27. N. Jaiswal, S. Upadhyay, D. Kumar, O. Parkash, Int. J. Hydrogen Energy 39, 543–551 (2014)

    Article  CAS  Google Scholar 

  28. S. Mazen, N. Abu-Elsaad, J. Magn. Magn. Mater. 324, 3366–3373 (2012)

    Article  CAS  Google Scholar 

  29. P. Hankare, K. Sanadi, K. Garadkar, D. Patil, I. Mulla, J. Alloys Compd. 553, 383–388 (2013)

    Article  CAS  Google Scholar 

  30. S.P. Deshmukh, S.B. Mullani, V.B. Koli, S.M. Patil, P.J. Kasabe, P.B. Dandge, S.A. Pawar, S.D. Delekar, Photochem. Photobiol. 94, 1249–1262 (2018)

    Article  CAS  Google Scholar 

  31. D.L. Carvalho, L.E. Borges, L.G. Appel, P.R. de la Piscina, N. Homs, Catal. Today 213, 115–121 (2013)

    Article  CAS  Google Scholar 

  32. P. Hankare, U. Sankpal, R. Patil, A. Jadhav, K. Garadkar, B. Chougule, J. Magn. Magn. Mater. 323, 389–393 (2011)

    Article  CAS  Google Scholar 

  33. N. Deraz, A. Alarifi, J. Anal. Appl. Pyrolysis 94, 41–47 (2012)

    Article  CAS  Google Scholar 

  34. E. Eser, H. Koç, Phys. B 492, 7–10 (2016)

    Article  CAS  Google Scholar 

  35. J. Kummerow, S. Raab, Energy Procedia 76, 240–246 (2015)

    Article  CAS  Google Scholar 

  36. H. Zhang, A. Suresh, C. Carter, B. Wilhite, Solid State Ionics 266, 58–67 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 357 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, S.P., Sanadi, K.R., Diggikar, R.S. et al. Structural, magnetic, and electrical properties of manganese-substituted magnesium chromate spinel structure. J Mater Sci: Mater Electron 32, 6810–6819 (2021). https://doi.org/10.1007/s10854-021-05386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05386-8

Navigation