Skip to main content
Log in

Determination of complex-specific heat and fragility of sodium borate glasses by temperature-modulated DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The frequency dependences of the complex-specific heat of the sodium borate glasses, xNa2O·(100 − x)B2O3, where x denotes molar concentration of Na2O, have been investigated by temperature-modulated DSC. The temperature dependences of α-relaxation time have been analyzed in Angell plot, and the fragility index has been determined. The composition dependence of the fragility index has been discussed on the basis of the variations of the structural units of the borate network. The origin of the fragility of the borate system relates to the distribution of the coordination number of boron atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Laughlin WT, Unlman DR. Viscous flow in simple organic liquids. J Phys Chem. 1972;76:2317–25.

    Article  CAS  Google Scholar 

  2. Angell CA. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids. 1991;131–133:13–31.

    Article  Google Scholar 

  3. Bray PJ, O’Keefe JG. Nuclear magnetic resonance investigations of the structure of alkali borate glasses. Phys Chem Glasses. 1963;4:37–46.

    Google Scholar 

  4. Zhong J, Bray PJ. Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR. J Non-Cryst Solids. 1989;111:67–76.

    Article  CAS  Google Scholar 

  5. Chryssikos GD, Kamitsos EI. Borate structures by vibrational spectroscopy. In: Wright AC, Feller AC, Hannon AC, editors. Borate glasses, crystals & melts. Sheffielf: The Society of Glass Technology; 1997. p. 128–39.

    Google Scholar 

  6. Hassan AK, Torell LM, Börjesson L, Doweidar H. Structural changes of B2O3 through the liquid-glass transition range: a Raman-scattering study. Phys Rev B. 1992;45:12797–805.

    Article  CAS  Google Scholar 

  7. Fukumi K, Ogawa K, Hayakawa J. Intensities of Raman bands in borate glasses. J Non-Cryst Solids. 1992;151:217–21.

    Article  CAS  Google Scholar 

  8. Fukawa Y, Matsuda Y, Ike Y, Kodama M, Kojima S. Glass transitions and elastic properties of lithium borate glasses over a wide composition range studied by micro-brillouin scattering. Jpn J Appl Phys. 2008;47:3833–5.

    Article  CAS  Google Scholar 

  9. Ike Y, Matsuda Y, Kojima S, Kodama M. Brillouin scattering study of liquid glass transition in lithium borate glass. Jpn J Appl Phys. 2006;45:4474–8.

    Article  CAS  Google Scholar 

  10. Kodama M. Ultrasonic velocity in sodium-borate glasses. J Mater Sci. 1991;26:4048–53.

    Article  CAS  Google Scholar 

  11. Kodama M, Matsushita T, Kojima S. Velocity of sound and elastic properties of Li2O–B2O3 glasses. Jpn J Appl Phys. 1995;34:2570.

    Article  CAS  Google Scholar 

  12. Matsuda Y, Fukawa Y, Ike Y, Kodama M, Kojima S. Dynamic specific heat, glass transition, and non-Debye nature of thermal relaxation in lithium borate glasses. J Phys Soc Jpn. 2008;77:084602-1–8.

    Google Scholar 

  13. Matsuda Y, Fukawa Y, Matsui C, Ike Y, Kodama M, Kojima S. Calorimetric study of the glass transition dynamics in lithium borate glasses over a wide composition range by modulated DSC. Fluid Phase Equilib. 2007;256:127–31.

    Article  CAS  Google Scholar 

  14. Matsuda Y, Matsui C, Ike Y, Kodama M, Kojima S. Non-Debye nature in thermal relaxation and thermal properties of lithium borate glasses studied by Modulated DSC. J Therm Anal Cal. 2006;85:725–30.

    Article  CAS  Google Scholar 

  15. Weyer S, Hensel A, Schick C. Phase angle correction for TMDSC in the glass-transition region. Thermochim Acta. 1997;304–305:267–75.

    Article  Google Scholar 

  16. Matsuda Y, Fukawa Y, Kawashima M, Kojima S. Fragility variation of lithium borate glasses studied by temperature-modulated DSC. AIP Conf Proc. 2008;982:207. doi:10.1063/1.2897785.

    Article  CAS  Google Scholar 

  17. Chryssikos GD, Kamitsos EI, Yiannopoulos YD. Towards a structural interpretation of fragility and decoupling trends in borate systems. J Non-Cryst Solids. 1996;196:244–8.

    Article  CAS  Google Scholar 

  18. Vilgis TA. Random energies, random coordination numbers, the Vogel-Fulcher law, and nonexponential relaxation. J Phys: Condens Matter. 1990;2:3667–71.

    Article  Google Scholar 

  19. Vilgis TA. Strong and fragile glasses—a powerful classification and its consequences. Phys Rev B. 1993;47:2882–5.

    Article  CAS  Google Scholar 

  20. Matsuda Y, Fukawa Y, Kawashima M, Mamiya S, Kojima S. Dynamic glass transition and fragility of lithium borate binary glass. Solid State Ionics. 2008;179:2424–7.

    Article  CAS  Google Scholar 

  21. Majerus O, Cormier L, Calas G, Beuneu B. Temperature-induced boron coordination change in alkali borate glasses and melts. Phys Rev B. 2003;67:024210-1–7.

    Article  Google Scholar 

  22. Yano T, Kunimine N, Shibata S, Yamane M. Structural investigation of sodium borate glasses and melts by Raman spectroscopy. II. Conversion between BO4 and BO2O units at high temperature. J Non-Cryst Solids. 2003;321:147–56.

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Y.M.) is thankful for the JSPS Research Fellowship 19-574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukawa, Y., Matsuda, Y., Kawashima, M. et al. Determination of complex-specific heat and fragility of sodium borate glasses by temperature-modulated DSC. J Therm Anal Calorim 99, 39–44 (2010). https://doi.org/10.1007/s10973-009-0522-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0522-5

Keywords

Navigation