Skip to main content
Log in

Kinetics of thermal degradation of poly(aryl ether)s containing phthalazinone and life estimation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New special engineering thermoplastics, poly(phthalazinone ether sulfone) (PPES) and poly(phthalazinone ether sulfone ketone) (PPESK), containing phthalazinone are synthesized through step-polymerization. The kinetics of thermal degradation of PPES and PPESK (1/1) in nitrogen is investigated at several heating rates by thermogravimetry (TG). It is concluded that, based on using Satava’s theory, the thermal degradation mechanism of PPESK (1/1) is nucleation and growth, the order of reaction of the degradation process is one (n = 1). In contrast, the thermal degradation mechanism of PPES is a phase boundary controlled reaction and the order of the reaction is two (n = 2). The kinetic parameters, including reaction energy and frequency factor of thermal degradation reaction for PPES and PPESK (1/1) are analyzed using isoconversional Friedman, Kissinger–Akahira–Sunose (K–A–S) and Ozawa method. In addition, the study focus on the influence of heating rate and ratio of ketone/sulfone on thermal stability and the life estimation are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Frequency factor (min−1)

E :

Apparent activation energy (kJ mol−1)

K :

Rate constant (min−1)

R :

Gas constant = 8.314 × 10−3 (kJ mol−1 K−1)

t :

Reaction time (min)

T :

Sample temperature (K)

α:

(W 0 − W)/(W 0 − W )

dα/dt :

Normalized mass-loss rate (min−1)

β:

Heating rate = dT/dt

W 0 :

Sample mass at start time (mg)

W :

Sample mass at time t (mg)

W :

Sample mass at end time (mg)

References

  1. Maier G. Low dielectric constant polymers for microelectronics. Prog Polym Sci. 2001;26:3–65.

    Article  CAS  Google Scholar 

  2. Nandan B, Kandpal LD, Mathur GN. Poly(ether ether ketone)/Poly(aryl ether sulfone) blends: relationships between morphology and mechanical properties. J Appl Polym Sci. 2003;90:2887–95.

    Article  CAS  Google Scholar 

  3. Johnson RN, Farnham AG, Clendinning RA, Hale WF, Merriam CN. Poly(aryl ethers) by nucleophilic aromatic substitution I. Synthesis and properties. J Polym Sci. 1967;A-1:2375–98.

    Google Scholar 

  4. Hale WF, Farnham AG, Johnson RN, Clendinning RA. Poly(Aryl ethers) by nucleophilic aromatic substitution. II. Thermal stability. J Polym Sci. 1967;A-1(5):2399–414.

    Google Scholar 

  5. Critchley JP, Knight GJ, Wright WW. Heat-resistant polymers. New York: Plenum Press; 1983.

    Google Scholar 

  6. Staniland PA, Wilde CJ, Bottino FA, Pasquale GD, Pollicino A, Recca A. Synthesis, characterization and study of the thermal properties of new polyarylene ethers. Polymer. 1992;33:1976–81.

    Article  CAS  Google Scholar 

  7. Dai Y, Jian X, Zhang S, Michael DG. Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK). J Membr Sci. 2002;207:189–97.

    Article  CAS  Google Scholar 

  8. Wu C, Zhang S, Yang D, Wei J, Yan C, Jian X. Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane. J Membr Sci. 2006;279:238–45.

    Article  CAS  Google Scholar 

  9. Zhang S, Jian X, Dai Y. Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane. J Membr Sci. 2005;246:121–6.

    Article  CAS  Google Scholar 

  10. He W, Liao GX, Jian XG. Mechanical and thermal properties of poly(phthalazinone ether sulfone)/poly(ether sulfone) blends. Polym Plast Technol Eng. 2006;45:625–35.

    Article  CAS  Google Scholar 

  11. Feng X, Liao G, He W, Sun Q, Jian X, Du J. Preparation and characterization of functionalized carbon nanotubes/poly(phthalazinone ether sulfone ketone)s composites. Polym Compos. 2008;30:365–74.

    Article  Google Scholar 

  12. Day M, Cooney JD, Wiles DM. The thermal stability of poly(aryl-ether-ether-ketone) as assessed by thermogravimetry. J Appl Polym Sci. 1989;38:323–37.

    Article  CAS  Google Scholar 

  13. Criado JM, Samchez-Jimenez PE, Perez-Maqueda LA. Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim. 2008;92:199–203.

    Article  CAS  Google Scholar 

  14. Jian XG, Allans H, Zheng HB. Preparation of poly(phthalazinone ether sulfone)s. Chinese Patent: CN931091802, 1993-07-26.

  15. Jian XG, Allans H, Zheng HB. Preparation of poly(phthalazinone ether ketone)s. Chinese Patent: CN931091799, 1993-07-26.

  16. Kök MV. Non-isothermal DSC and TG/DTG analysis of the combustion of silopi asphaltite. J Therm Anal Calorim. 2007;88:663–8.

    Article  Google Scholar 

  17. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C. 1963;6:18.

    Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  19. Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  20. Satava V. Mechanism and kinetics from non-isothermal TG traces. Thermochim Acta. 1971;2:423–8.

    Article  CAS  Google Scholar 

  21. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  22. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  23. Hu HR, Shi QZ. Thermal kinetics. Beijing: Science Press; 2001.

    Google Scholar 

  24. Day M, Sally D, Wiles DM. Thermal degradation of poly(aryl-ether-ether-ketone): experimental evaluation of crosslinking reactions. J App Polym Sci. 1990;40:1615–25.

    Article  CAS  Google Scholar 

  25. Nandan B, Kandpal LD, Mathur GN. Poly(ether ether ketone)/poly(aryl ether sulphone) blends: thermal degradation behaviour. Eur Polym J. 2003;39:193–8.

    Article  CAS  Google Scholar 

  26. Abate L, Blanco I, Pappalardo A, Pollicino A. A kinetic study of the thermal and oxidative degradations of a new poly(arylene)ether copolymer. J Therm Anal Calorim. 2001;65:373–80.

    Article  CAS  Google Scholar 

  27. Criado JM, Pérez-Maqueda LA, Sánchez-Jiménez PE. Dependence of the preexponential factor on temperature. J Therm Anal Calorim. 2005;82:671–5.

    Article  CAS  Google Scholar 

  28. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1553–8.

    Article  Google Scholar 

  29. Stojakovic D, Rajic N, Sajic S, Logar NZ, Kaucic V. A kinetic study of the thermal degradation of 3-methylaminopropylamine inside AlPO4–21. J Therm Anal Calorim. 2007;87:337–43.

    Article  CAS  Google Scholar 

  30. Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4 H2O–H4 precursor. J Therm Anal Calorim. 2007;91:511–6.

    Article  Google Scholar 

  31. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

  32. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  33. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.

    Article  CAS  Google Scholar 

  34. Budrugeac P. The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters. J Therm Anal Calorim. 2007;89:143–51.

    Article  CAS  Google Scholar 

  35. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  36. Zhang K, Hong J, Cao G, Zhan D, Tao Y, Cong C. The kinetics of thermal dehydration of copper(II) acetate monohydrate in air. Thermochim Acta. 2005;437:145–9.

    Article  CAS  Google Scholar 

  37. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. doi10.1007/s10973-009-0108-2.

  38. Li XG, Huang MR. Thermal decomposition kinetics of thermotropic poly (oxybenzoate-co-oxynaphthoate) Vectra copolyester. Polym Degrad Stab. 1999;64:81–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Education Office of Liaoning Province (No.2008567). The authors would like to thank Dr. K. He (Concordia University, Montreal, Canada) for him to have a proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Deng, F., Liao, GX. et al. Kinetics of thermal degradation of poly(aryl ether)s containing phthalazinone and life estimation. J Therm Anal Calorim 100, 1055–1062 (2010). https://doi.org/10.1007/s10973-009-0515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0515-4

Keywords

Navigation