Skip to main content
Log in

Thermal behaviour of tin(II/IV) phosphates prepared by various methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Tin(II/IV) phosphate was prepared by various synthetic methods. The different methods resulted in tin phosphate with different properties, i.e., different crystalline form and behaviour during thermal treatment. The prepared materials have 3 mol water of crystallisation, which they lose in different ways. Total mass loss was between 20 and 30%. This could be connected with water loss, going generally in two steps in parallel with endothermic processes. At the end of thermal treatment, tin pyrophosphate is obtained, irrespective of the method of preparation used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harrison FG. The structural chemistry of bivalent Ge, Sn and Pb. Coord Chem Rev. 1976;20:1–36. (and references therein).

    Article  CAS  Google Scholar 

  2. Polarz S, Smarsky B. Nanoporous materials. J Nanosci Technol. 2002;2/6:581–612. (and references therein).

    Google Scholar 

  3. Cheetham AK, Férey G, Loiseau T. Hybrid inorganic–organic materials and their application. Angew Chem Int Ed. 1999;38:3268–92.

    Article  CAS  Google Scholar 

  4. Clearfield A, editor. Inorganic ion exchange materials, other group (IV) acid salts (Chap. 2). Boca Raton, FL: CRC Press; 1982.

    Google Scholar 

  5. Weiss MA, Michel E. Kationenaustausch und eindimensionales innerkristallines Quellungsvermögen bei den isotypen Verbindungen H2[M(XO4)2]·H2O; (X = P, As; M = Ti, Zr, Sn). Z Naturforsch. 1967;B22:1100–12.

    Google Scholar 

  6. Winkler VA, Thilo E. Über eine reiche saurer Verbindungen HXvP2O8 und H2XIVP2O8 mit schichtstrur. Z Anorg Allg Chem. 1966;346:92–112.

    Article  CAS  Google Scholar 

  7. Costantino U, Gasperoni A. Crystalline insoluble acid salts of tetravalent metals XI. J Chromatogr. 1970;51:289–96.

    Article  CAS  Google Scholar 

  8. Berezovska IS, Yanishpolskii VV, Tartykh VA. Synthesis of mesoporous silicas inside large pores of inorganic matrix. J Therm Anal Calorim. 2008;94(3):649–53.

    Article  CAS  Google Scholar 

  9. Yang K, Li DH, Chen S, Wu F. Thermal behaviour of Nickel/metal hybrid battery during charging and discharging. J Therm Anal Calorim. 2009;95(2):453–9.

    Article  Google Scholar 

  10. Takei T, Yonesaki Y, Kumada N, Kiomura N. Preparation of oriented titanium phosphate and tin phosphate/polyaniline electrochemical deposition. Langmuir. 2008;24(16):8554–60.

    Article  CAS  Google Scholar 

  11. Stenina A, Aliev AD, Glukhov IV, Spiridonov FM, Yaroslavtsev AB. Cation mobility and ion exchange in acid tin phosphate. Solid State Ionics. 2003;162–163:191–5.

    Article  Google Scholar 

  12. Fuller MJ. Ion exchange properties of tin (IV) materials-IV. J Inorg Nucl Chem. 1971;33:559–66.

    Article  CAS  Google Scholar 

  13. Ho WH, Yen SK. Electrochemical synthesis of SnHPO4/H3PO3 on Pt and forming SnP2O7. Electrochem Solid State Lett. 2005;8:C134–7. and references therein.

    Article  CAS  Google Scholar 

  14. McDonald RC, Hau HH, Eriks K. Crystallographic studies of tin (II) compounds 1. Inorg Chem. 1976;15:762–5.

    Article  CAS  Google Scholar 

  15. McDonalds RC, Eriks K. Crystallographic studies of tin (II) compounds 2. Inorg Chem. 1980;19:1237–41.

    Article  Google Scholar 

  16. Natarajan S, Easwaramoorthy M, Cheetham AK, Rao CNR, A three-dimensional open-framework tin (II) phosphate exhibiting reversible dehydration and ion exchange properties, Chem Commun. 1998; 1561–2.

  17. Salami TO, Marouchin K, Zavalij PY, Scott, Oliver RJ. Three low-dimensional tin oxalate and tin phosphate materials: BING-4, -7, and -8. Chem Mater. 2002;14(11):4851–7.

    Article  CAS  Google Scholar 

  18. Gon-Lee J, Son D, Kim C, Park B. Electrochemical properties of tin phosphates with various mesopore ratios. J Power Sources. 2007;172:908–12.

    Article  Google Scholar 

  19. Schütz C, Dwars T, Schnorpfeil C, Radnik J, Menzel M, Kragl U. Selective polymerization of propylene oxide by a tin phosphate coordination polymer. J Polym Sci A. 2008;45(14):3032–41.

    Article  Google Scholar 

  20. Jiang T, Lough A, Ozin GA. Room temperature self-assembly of (DABCOH)2Sn3S7. Adv Mater. 1998;10:42–6.

    Article  CAS  Google Scholar 

  21. Natarajan S, Attfield MP, Cheetham AK. [H3N(CH2)2NH3]0.5[Sn4P3O12]: an open-framework tin(II) phosphate. Angew Chem Int Ed Engl. 1997;36:978–80.

    Article  CAS  Google Scholar 

  22. Francis MD, Tofe AJ, Hiles RA, Birch CG, Beven JA, Grabenstetter RJ. Inorganic tin: chemistry, disposition and role in nuclear medicine. Int J Nucl Med Biol. 1981;8:145–52. (and references therein).

    Article  CAS  Google Scholar 

  23. Noronha OPD. Time-dependent characteristic s of Sn-complexes for preparing 99mTc labelled radiopharmaceuticals and their bioavailabilities. Nucl Med. 1978;17(3):110–25. (and references therein).

    CAS  Google Scholar 

  24. Mathew M, Schroeder LW, Jordan TH. The crystal structure of anhydrous stannous phosphate, Sn3(PO4)2. Acta Cryst. 1977;B33:1812–6.

    CAS  Google Scholar 

  25. Jordan TH, Schroeder LW, Dickens B, Brown WE. Crystal structure of stannous hydroxide phosphate. Inorg Chem. 1976;15/8:1810–4.

    Article  Google Scholar 

  26. Natarajan S. Synthesis and structural characterisation of a novel tin (II) oxyphosphate. J Mater Chem. 1998;8:2757–60.

    Article  CAS  Google Scholar 

  27. Varshney KG, Rafiquee MZA, Somya A. Synthesis, characterisation and adsorption behaviour of TX-100 based Sn (IV) phosphate, a new hybrid ion exchanger. J Therm Anal Calorim. 2007;90(3):663–7.

    Article  CAS  Google Scholar 

  28. Alberti G, Torracca E, Conte A. Stoichiometry of ion exchange materials containing zirconium and phosphate. J Inorg Nucl Chem. 1966;28:607–12.

    Article  CAS  Google Scholar 

  29. Varshney KG, Jain V, Agrawal A, Mojumdar SC. Pyridine based Zr (IV) and Sn (IV) phosphates as new and novel intercalated ion exchangers. J Therm Anal Calorim. 2006;86(3):609–21.

    Article  CAS  Google Scholar 

  30. Crespi MS, Zorel HE Jr, Ribeiro CA. Thermal behaviour of the Ti(IV), Zr (IV), and Pb(II) complexes with 5-nitro-8-hydroxyquinoline. J Therm Anal Calorim. 2003;72:507–14.

    Article  CAS  Google Scholar 

  31. Surenda Nath KV, Tandon SN. Synthesis and characterisation of a new crystalline tin (II) arsenophosphate ion exchanger. Can J Chem. 1990;68:346–9.

    Article  Google Scholar 

  32. Pozas-Tormo R, Moreno-Real L, Martinez-Lara M, Rodrigez-Castellon E. Ion exchange reactions of n-butylamine intercalates of tin (IV) hydrogen phosphate and hydrogen uranyl phosphate with Co (III) complexes. Can J Chem. 1986;64:35–9.

    Article  CAS  Google Scholar 

  33. Molnár GL, editor. Prompt gamma activation analysis with neutron beams. Dordrecht: Kluwer; 2004.

    Google Scholar 

  34. Van Weser JR. Phosphorus and its compounds, vol. I. NY: Interscience Co; 1958.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Zs. Révay for performing the prompt gamma-activation analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Szirtes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szirtes, L., Megyeri, J. & Kuzmann, E. Thermal behaviour of tin(II/IV) phosphates prepared by various methods. J Therm Anal Calorim 99, 415–421 (2010). https://doi.org/10.1007/s10973-009-0461-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0461-1

Keywords

Navigation