Skip to main content
Log in

Synthesis and thermal stability of hydrotalcites based upon gallium

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrotalcites based upon gallium as a replacement for aluminium in hydrotalcite over a Mg/Al ratio of 2:1 to 4:1 were synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium containing hydrotalcite. A comparison is made with the Mg/Al hydrotalcite in which the d(003) spacing for the Mg/Al hydrotalcite varied from 7.62 Å for the 2:1 Mg hydrotalcite to 7.98 Å for the 4:1 hydrotalcite. The thermal stability of the gallium containing hydrotalcite was determined using thermogravimetric analysis. Four mass loss steps at 77, 263–280, 485 and 828 °C with mass losses of 10.23, 21.55, 5.20 and 7.58% are attributed to dehydration, dehydroxylation and decarbonation. The thermal stability of the gallium containing hydrotalcite is slightly less than the aluminium hydrotalcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allmann R. Crystal structure of pyroaurite. Acta Crystallogr B. 1968;24:972–7.

    Article  CAS  Google Scholar 

  2. Ingram L, Taylor HFW. Crystal structures of sjoegrenite and pyroaurite. Mineral Mag. 1967;36:465–79.

    Article  CAS  Google Scholar 

  3. Taylor HFW. Crystal structures of some double hydroxide minerals. Mineral Mag. 1973;39:377–89.

    Article  CAS  Google Scholar 

  4. Rives V (ed) (2001) Layered double hydroxides: present and future. Nova Science Publishers, Inc., New York.

  5. Brown G, Van Oosterwyck-Gastuche MC. Mixed magnesium-aluminum hydroxides. II. Structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds. Clay Miner. 1967;7:193–201.

    Article  CAS  Google Scholar 

  6. Taylor HFW. Segregation and cation-ordering in sjogrenite and pyroaurite. Mineral Mag. 1969;37:338–42.

    Article  CAS  Google Scholar 

  7. Taylor RM. Stabilization of color and structure in the pyroaurite-type compounds iron(II) iron(III) aluminum(III) hydroxycarbonates. Clay Miner. 1982;17:369–72.

    Article  CAS  Google Scholar 

  8. Kloprogge JT, Wharton D, Hickey L, Frost RL. Infrared and Raman study of interlayer anions CO3 2−, NO3 , SO4 2− and CIO4 in Mg/Al-hydrotalcite. Am Mineral. 2002;87:623–9.

    Article  CAS  Google Scholar 

  9. Palmer SJ, Frost RL. Characterisation of bauxite and seawater neutralised bauxite residue using XRD and vibrational spectroscopic techniques. J Mater Sci. 2009;44:55–63.

    Article  CAS  Google Scholar 

  10. Palmer SJ, Frost RL, Nguyen T. Hydrotalcites and their role in coordination of anions in Bayer liquors: anion binding in layered double hydroxides. Coord Chem Rev. 2009;253:250–67.

    Article  CAS  Google Scholar 

  11. Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.

    Article  CAS  Google Scholar 

  12. Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.

    Article  CAS  Google Scholar 

  13. Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.

    Article  CAS  Google Scholar 

  14. Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.

    Article  Google Scholar 

  15. Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    Article  CAS  Google Scholar 

  16. Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.

    Article  CAS  Google Scholar 

  17. Nickel EH, Wildman JE. Hydrohonessite—a new hydrated nickel-iron hydroxysulfate mineral; its relationship to honessite, carrboydite, and minerals of the pyroaurite group. Mineral Mag. 1981;44:333–7.

    Article  CAS  Google Scholar 

  18. Bish DL, Livingstone A. The crystal chemistry and paragenesis of honessite and hydrohonessite: the sulfate analogs of reevesite. Mineral Mag. 1981;44:339–43.

    Article  CAS  Google Scholar 

  19. Nickel EH, Clarke RM. Carrboydite, a hydrated sulfate of nickel and aluminum: a new mineral from Western Australia. Am Mineral. 1976;61:366–72.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial and infra-structure support of the Queensland Research and Development Centre (QRDC-RioTintoAlcan) and the Queensland University of Technology Inorganic Materials Research Program of the School of Physical and Chemical Sciences are gratefully acknowledged. One of the authors (LMG) thanks the Queensland University of Technology for a visiting student fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grand, LM., Palmer, S.J. & Frost, R.L. Synthesis and thermal stability of hydrotalcites based upon gallium. J Therm Anal Calorim 101, 195–198 (2010). https://doi.org/10.1007/s10973-009-0456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0456-y

Keywords

Navigation