Skip to main content
Log in

Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermodynamic and kinetic stabilities of CuAlO2 and CuGaO2 have been evaluated by using thermogravimetry and thermodynamic calculations. It has been revealed that CuAlO2 and CuGaO2 are not thermodynamically stable in air below 800 °C and 1,200 °C, respectively, and that the oxidation reaction, 4CuMO2 + O2 → 2CuO + 2CuM2O4 (M = Al, Ga), should occur if the reaction kinetics are high enough. However, rate constants and activation energies indicated slow kinetics of the oxidation reaction, showing kinetic stability of CuMO2 even under some thermodynamically unstable temperatures and atmospheres. It was also concluded that CuAlO2 showed higher thermodynamic and kinetic stability than CuGaO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389:939–42.

    Article  CAS  Google Scholar 

  2. Yanagi H, Kawazoe H, Kudo A, Yasukawa M, Hosono H. Chemical design and thin film preparation of p-type conductive transparent oxides. J Electroceramics. 2000;4:407–14.

    Article  CAS  Google Scholar 

  3. Kato S, Fujimaki R, Ogasawara M, Wakabayashi T, Nakahara Y, Nakata S. Oxygen storage capacity of CuMO2 (M = Al, Fe, Mn, Ga) with a delafossite-type structure. Appl Catal B Environ. 2008;89:183–8.

    Article  Google Scholar 

  4. Jacob A, Parent C, Boutinaud P, Le Flem G, Doumerc JP, Ammar A, et al. Luminescent properties of delafossite-type oxides LaCuO2 and YCuO2. Solid State Commun. 1997;103:529–32.

    Article  CAS  Google Scholar 

  5. Tsuboi N, Hoshino T, Ohara H, Suzuki T, Kobayashi S, Kato K, et al. Control of luminescence and conductivity of delafossite-type CuYO2 by substitution of rare earth canon (Eu, Tb) and/or Ca canon for Y cation. J Phys Chem Solids. 2005;66:2134–8.

    Article  CAS  Google Scholar 

  6. Takahashi H, Motegi Y, Tsuchigane R, Hasegawa M. Pressure effect on the antiferromagnetic transition temperature in CuFeO2. J Mag Mag Mater. 2004;272:216–7.

    Article  Google Scholar 

  7. Yanagi H, Ueda K, Ohta H, Orita M, Hirano M, Kawazoe H, et al. Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure. Solid State Commun. 2002;121:15–7.

    Article  Google Scholar 

  8. Hashimoto T, Koinuma H, Kishio K. Thermodynamic estimation of oxidation ability of various gases used for the preparation of superconducting films at high-vacuum. Jpn J Appl Phys. 1991;30:1685–6.

    Article  CAS  Google Scholar 

  9. Jacob KT, Alcock CB. Thermodynamics of CuAlO2 and CuAl2O4 and phase-equilibria in system Cu2O–CuO–Al2O3. J Am Ceram Soc. 1975;58:192–5.

    Article  CAS  Google Scholar 

  10. Gall RB, Cann DP. High temperature phase equilibria in the Cu2O–Ga2O3–In2O3 system. Ceram Eng Sci Proc. 2003;24:143–8.

    Article  CAS  Google Scholar 

  11. Jacob KT, Alcock CB. Thermodynamics and phase-equilibria in system Cu2O–CuO–Ga2O3. Revue Inter Hautes Temp Refractaires. 1976;13:37–42.

    CAS  Google Scholar 

  12. Yokokawa H, Yamauchi S, Matsumoto T. Thermodynamic database MALT for windows with gem and CHD. Calphad. 2002;26:155–66.

    Article  CAS  Google Scholar 

  13. Ishiguro T, Kitazawa A, Mizutani N, Kato M. Single-crystal growth and crystal-structure refinement of CuAlO2. J Solid State Chem. 1981;40:170–4.

    Article  CAS  Google Scholar 

  14. Areán CO, Viñuela JSD. Structural study of copper-nickel aluminate (Cu x Ni1−x Al2O4) spinels. J Solid State Chem. 1985;60:1–5.

    Article  Google Scholar 

  15. Stone FS, Areán CO, Viñuela JSD, Platero EE. Structural characterization of cadmium copper gallium oxide (CdxCu1-xGa2O4) Spinels. J Chem Soc Faraday Trans. 1985;81:1255–61.

    Article  CAS  Google Scholar 

  16. Tsuchida T, Furuichi R, Sukegawa T, Furudate M, Ishii T. Thermoanalytical study on the reaction of the CuO-Al2O3(η, γ and α) systems. Thermochim Acta. 1984;78:71–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. K. Endoh (College of Humanities and Sciences, Nihon University) for the measurement of particle size distribution with laser diffraction particle size analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumekawa, Y., Hirai, M., Kobayashi, Y. et al. Evaluation of thermodynamic and kinetic stability of CuAlO2 and CuGaO2 . J Therm Anal Calorim 99, 57–63 (2010). https://doi.org/10.1007/s10973-009-0454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0454-0

Keywords

Navigation