Skip to main content
Log in

Polymorphism and solvation of indomethacin

Characterization of an indomethacin–tetrahydrofuran solvate leading to phase I

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Indomethacin crystallizes from solutions in tetrahydrofuran as a solvate exhibiting the mole ratio 1 indomethacin:2 tetrahydrofuran. Upon heating, desolvation into indomethacin phase I occurs through partial amorphization and transitory formation of a phase, which is different from the crystallographically known polymorphs. The X-ray powder diffraction pattern of the solvate was tentatively indexed on a triclinic lattice (a = 31.454(5) Å, b = 17.883(3) Å, c = 10.551(2) Å, α = 70.55(2)°, β = 105.31(2)°, γ = 136.70(1)°). Assuming Z = 6 (1 indomethacin + 2 tetrahydrofuran) formula units per unit cell, the solvate’s specific volume is similar to the value calculated using additivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yamamoto H. 1-Acyl-indoles. II. A new syntheses of 1-(ion-chlorobenzoyl)-5-methoxy-3-indolylacetic acid and its polymorphism. Chem Pharm Bull (Tokyo). 1968;16:17–9.

    CAS  Google Scholar 

  2. Borka L. Polymorphism of indomethacine. New modifications, their melting behavior, and solubility. Acta Pharm Suec. 1974;11:295–303.

    CAS  Google Scholar 

  3. Crowley KJ, Zografi G. Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J Pharm Sci. 2002;91:492–507.

    Article  CAS  Google Scholar 

  4. Spychala S, Butkiewicz K, Pakula R, Pichnej L. Polymorphism of indomethacin. Part II. Identification and rapid determination of polymorphic forms of indomethacin by IR spectrometry. Pol J Pharmacol Pharm. 1977;29:157–60.

    CAS  Google Scholar 

  5. Kaneniwa N, Otsuka M, Hayashi T. Physicochemical characterization of indomethacin polymorphs and the transformation kinetics in ethanol. Chem Pharm Bull. 1985;33:3447–55.

    CAS  Google Scholar 

  6. Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci. 1994;83:1700–5.

    Article  CAS  Google Scholar 

  7. Legendre B, Feutelais Y. Polymorphic and thermodynamic study of indomethacin. J Therm Anal Calorim. 2004;76:255–64.

    Article  CAS  Google Scholar 

  8. Hamdi N, Feutelais Y, Yagoubi N, de Girolamo D, Legendre B. Solvates of indomethacin. J Therm Anal Calorim. 2004;76:985–1001.

    Article  CAS  Google Scholar 

  9. Pan X, Julian T, Augsburger L. Quantitative measurement of indomethacin crystallinity in indomethacin-silica gel binary system using differential scanning calorimetry and X-ray powder diffractometry. AAPS PharmSciTech. 2006;7:E11.

    Article  Google Scholar 

  10. Kistenmacher TJ, Marsh RE. Crystal and molecular structure of an antiinflammatory agent, indomethacin, 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid. J Am Chem Soc. 1972;94:1340–5.

    Article  CAS  Google Scholar 

  11. Galdecki Z, Glowka ML. Crystal and molecular structure of the gamma-form of 1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid. A comparison of results based on photographic data with previous results obtained by means of a single crystal diffractometer. Rocz Chem. 1976;50:1139–48.

    CAS  Google Scholar 

  12. Cox PJ, Manson PL. γ-Indomethacin at 120 K. Acta Crystallogr Sect E Struct Rep Online. 2003;E59:o986–8.

    Article  CAS  Google Scholar 

  13. Chen X, Morris KR, Griesser UJ, Byrn SR, Stowell JG. Reactivity differences of indomethacin solid forms with ammonia gas. J Am Chem Soc. 2002;124:15012–9.

    Article  CAS  Google Scholar 

  14. Cox PJ, Manson PL. Indomethacin tert-butanol solvate at 120 K. Acta Crystallogr Sect E Struct Rep Online. 2003;E59:o1189–91.

    Article  CAS  Google Scholar 

  15. Slavin PA, Sheen DB, Shepherd EEA, Sherwood JN, Feeder N, Docherty R, et al. Morphological evaluation of the gamma-polymorph of indomethacin. J Cryst Growth. 2002;237–239:300–5.

    Article  Google Scholar 

  16. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B (Amsterdam). 1993;192:55–69.

    CAS  Google Scholar 

  17. Rodriguez-Carvajal J. Commission on powder diffraction (IUCr). Newsletter. 2001;26:12.

    Google Scholar 

  18. Boultif A, Louer D. Powder pattern indexing with the dichotomy method. J Appl Crystallogr. 2004;37:724–31.

    Article  CAS  Google Scholar 

  19. Luger P, Buschmann J. Twist conformation of tetrahydrofuran in the crystal form. Angew Chem Int Ed. 1983;22:410–1.

    Google Scholar 

  20. Steininger R, Bilgram JH, Gramlich V, Petter W. Crystal growth, crystal optics, and crystal structure of the phase IV of tertiary-butyl alcohol. Z Kristallogr. 1989;187:1–13.

    Article  CAS  Google Scholar 

  21. McGregor PA, Allan DR, Parsons S, Clark SJ. Hexamer formation in tertiary butyl alcohol (2-methyl-2-propanol, C4H10O). Acta Crystallogr Sect B Struct Sci. 2006;B62:599–605.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo B. Rietveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolaï, B., Céolin, R. & Rietveld, I.B. Polymorphism and solvation of indomethacin. J Therm Anal Calorim 102, 211–216 (2010). https://doi.org/10.1007/s10973-009-0412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0412-x

Keywords

PACS

Navigation