Skip to main content
Log in

Synthesis and thermal stability of hydrotalcites containing manganese

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hydrotalcite based upon manganese known as charmarite Mn4Al2(OH)12CO3·3H2O has been synthesised with different Mn/Al ratios from 4:1 to 2:1. Impurities of manganese oxide, rhodochrosite and bayerite at low concentrations were also produced during the synthesis. The thermal stability of charmarite was investigated using thermogravimetry. The manganese hydrotalcite decomposed in stages with mass loss steps at 211, 305 and 793 °C. The product of the thermal decomposition was amorphous material mixed with manganese oxide. A comparison is made with the thermal decomposition of the Mg/Al hydrotalcite. It is concluded that the synthetic charmarite is slightly less stable than hydrotalcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allmann R. Crystal structure of pyroaurite. Acta Crystallogr. 1968;24:972–7.

    Article  CAS  Google Scholar 

  2. Ingram L, Taylor HFW. Crystal structures of sjoegrenite and pyroaurite. Mineral Mag. 1967;36:465–79.

    Article  CAS  Google Scholar 

  3. Taylor HFW. Crystal structures of some double hydroxide minerals. Mineral Mag. 1973;39:377–89.

    Article  CAS  Google Scholar 

  4. Rives V, editor. Layered double hydroxides: present and future. New York: Nova Science Publishers, Inc.; 2001.

    Google Scholar 

  5. Boclair JW, Braterman PS. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts. Chem Mater. 1999;11:298–302.

    Article  CAS  Google Scholar 

  6. Chen H-q, Zhan Z-k. Synthesis, characterization and catalysis of Cu–Mn–Al hydrotalcite like compounds, Huaxue Yanjiu Yu Yingyong 2007;19:877–81.

    Google Scholar 

  7. Fernandez JM, Barriga C, Ulibarri M-A, Labajos FM, Rives V. Preparation and thermal stability of manganese-containing hydrotalcite. J Math Chem. 1994;4:1117–21.

    Article  CAS  Google Scholar 

  8. Sampieri A, Fetter G, Pfeiffer H, Bosch P. Carbonate phobic (Zn, Mn)-Al hydrotalcite-like compounds. Solid State Sci. 2007;9:394–403.

    Article  CAS  Google Scholar 

  9. Chao GY, Gault RA. Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T and caresite-3T, a new group of carbonate minerals related to the hydrotalcite—manasseite group. Can Mineral. 1997;35:1541–9.

    CAS  Google Scholar 

  10. Chen A, Xu H, Le Y, Hua W, Shen W, Gao Z. Catalyst using M/Mn/Al hydrotalcite as precursor and its preparation process. Fudan University, People Report China. Application: CN CN; 2004, p. 11.

  11. Chen A, Xu H, Yue Y, Shen W, Hua W, Gao Z. M-Mn-Al Hydrotalcite-like Compounds as Precursors for Methyl Benzoate Hydrogenation Catalysts. Ind Eng Chem Res. 2004;43:6409–15.

    Article  CAS  Google Scholar 

  12. Cheng H, Ding W, Lu X, Zhang Y, Ai X. Hydrotalcite type hydrocracking catalyst and its preparation method. Shanghai University, People Report China. Application: CN CN; 2008, p. 8.

  13. Ebitani K, Motokura K, Mizugaki T, Kaneda K. Heterotrimetallic RuMnMn species on a hydrotalcite surface as highly efficient heterogeneous catalysts for liquid-phase oxidation of alcohols with molecular oxygen. Angew Chem Int Ed. 2005;44:3423–6.

    Article  CAS  Google Scholar 

  14. Jiratova K, Cuba P, Kovanda F, Hilaire L, Pitchon V. Preparation and characterisation of activated Ni (Mn)/Mg/Al hydrotalcites for combustion catalysis. Catal Today. 2002;76:43–53.

    Article  CAS  Google Scholar 

  15. Pacultova K, Obalova L, Kovanda F, Jiratova K. Catalytic reduction of nitrous oxide with carbon monoxide over calcined Co-Mn-Al hydrotalcite. Catal Today. 2008;137:385–9.

    Article  CAS  Google Scholar 

  16. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides. J Colloid Interface Sci. 2005;290:45–51.

    Article  CAS  Google Scholar 

  17. Harrison DP. Sorption-enhanced hydrogen production: a review. Ind Eng Chem Res. 2008;47:6486–501.

    Article  CAS  Google Scholar 

  18. Brown G, Van Oosterwyck-Gastuche MC. Mixed magnesium-aluminum hydroxides. II. Structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds. Clay Miner. 1967;7:193–201.

    Article  CAS  Google Scholar 

  19. Taylor HFW. Segregation and cation-ordering in sjogrenite and pyroaurite. Mineral Mag. 1969;37:338–42.

    Article  CAS  Google Scholar 

  20. Taylor RM. Stabilization of color and structure in the pyroaurite-type compounds iron(II) iron(III) aluminum(III) hydroxycarbonates. Clay Miner. 1982;17:369–72.

    Article  CAS  Google Scholar 

  21. Kloprogge JT, Wharton D, Hickey L, Frost RL. Infrared and Raman study of interlayer anions CO2–3, NO-3, SO2–4 and CIO-4 in Mg/Al-hydrotalcite. Am Mineral. 2002;87:623–9.

    CAS  Google Scholar 

  22. Frost RL, Hales MC, Martens WN. Thermogravimetric analysis of selected group (II) carbonate minerals—Implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:999–1005.

    Article  CAS  Google Scholar 

  23. Palmer SJ, Spratt HJ, Frost RL. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim. 2009;95:123–9.

    Article  CAS  Google Scholar 

  24. Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.

    Article  CAS  Google Scholar 

  25. Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.

    Article  Google Scholar 

  26. Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    Article  CAS  Google Scholar 

  27. Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.

    Article  CAS  Google Scholar 

  28. Pagano R. New minerals. Updates of systematic mineralogy, Rivista Mineralogica Italiana 1999;1:62–6.

    Google Scholar 

  29. Nickel EH, Wildman JE. Hydrohonessite—a new hydrated nickel-iron hydroxysulfate mineral; its relationship to honessite, carrboydite, and minerals of the pyroaurite group. Mineral Mag. 1981;44:333–7.

    Article  CAS  Google Scholar 

  30. Bish DL, Livingstone A. The crystal chemistry and paragenesis of honessite and hydrohonessite: the sulfate analogs of reevesite. Mineral Mag. 1981;44:339–43.

    Article  CAS  Google Scholar 

  31. Nickel EH, Clarke RM. Carrboydite, a hydrated sulfate of nickel and aluminum: a new mineral from Western Australia. Am Mineral. 1976;61:366–72.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial and infra-structure support of the Queensland Research and Development Centre (QRDC-RioTintoAlcan) and the Queensland University of Technology Inorganic Materials Research Program of the School of Physical and Chemical Sciences are gratefully acknowledged. One of the authors (LMG) thanks the Queensland University of Technology for a visiting student fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Appendix

Appendix

Calculation of water content for Mn2+/Al3+ hydrotalcite

  • Proposed composition Mn6Al2(OH)16CO3·xH2O

  • Total mass of hydrotalcite analysed: 26.852 mg

  • % mass loss of water up to 264 °C: 9.67%

  • Mass of water removed up to 264 °C: 2.5966 mg

  • Molar mass of water: 18.02 g mol−1

  • Moles of water removed: 0.144095 mmol

  • Mass of dehydrated mineral: 26.852 – 2.5966 = 24.2554 mg

  • Molar mass of dehydrated mineral: 715.738 g mol−1

  • Moles of dehydrated mineral: 0.033888 mmol

Calculation of x:

  • 1 mol dehydrated mineral: x mol H2O

  • 0.033888 mmol dehydrated mineral: 0.144095 mmol H2O

  • x = 4.2521 − 4 mol

  • Formula: Mn6Al2(OH)16CO3·4H2O

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grand, LM., Palmer, S.J. & Frost, R.L. Synthesis and thermal stability of hydrotalcites containing manganese. J Therm Anal Calorim 100, 981–985 (2010). https://doi.org/10.1007/s10973-009-0402-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0402-z

Keywords

Navigation