Skip to main content
Log in

Influence of the thermal treatment in the crystallization of NiWO4 and ZnWO4

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

NiWO4 and ZnWO4 were synthesized by the polymeric precursor method at low temperatures with zinc or nickel carbonate as secondary phase. The materials were characterized by thermal analysis (TG/DTA), infrared spectroscopy, UV–Vis spectroscopy and X-ray diffraction. NiWO4 was crystalline after calcination at 350 °C/12 h while ZnWO4 only crystallized after calcination at 400 °C for 2 h. Thermal decomposition of the powder precursor of NiWO4 heat treated for 12 h had one exothermic transition, while the precursor heat treated for 24 h had one more step between 600 and 800 °C with a small mass gain. Powder precursor of ZnWO4 presented three exothermic transitions, with peak temperatures and mass losses higher than NiWO4 has indicating that nickel made carbon elimination easier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Oliveira ALM, Ferreira JM, Silva MRS, Braga GS, Soledade LEB, Maurera MAMA, et al. Yellow Zn x Ni1-x WO4 pigments obtained using a polymeric precursor method. Dyes Pigm. 2008;77:210–6.

    Article  Google Scholar 

  2. Quintana-Melgoza JM, Cruz-Reyes J, Avalos-Borja M. Synthesis and characterization of NiWO4 crystals. Mater Lett. 2001;47:314–8.

    Article  CAS  Google Scholar 

  3. Kuzmin A, Purans J. XAS, XRD, AFM and Raman studies of nickel tungstate electrochromic thin films. Electrochim Acta. 2001;46:2233–6.

    Article  CAS  Google Scholar 

  4. Lou Z, Hao J, Cocivera M. Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis. J Lumin. 2002;99:349–54.

    Article  CAS  Google Scholar 

  5. He HY. Luminescence properties of NiWO4 powders and films prepared with novel methods. Mater Res Innov. 2008;12:138–41.

    Article  CAS  Google Scholar 

  6. Ejima T, Banse T, Takatsuka H, Kondo Y, Ishino M, Kimura N, et al. Microscopic optical and photoelectron measurements of MWO4 (M = Mn, Fe, and Ni). J Lumin. 2006;119:59–63.

    Article  Google Scholar 

  7. Sen A, Pramanik P. A chemical synthetic route for the preparation of fine-grained metal tungstate powders (M = Ca, Co, Ni, Cu, Zn). J Eur Ceram Soc. 2001;21:745–50.

    Article  CAS  Google Scholar 

  8. Gouveia DS, Soledade LEB, Paskocimas CA, Longo E, Souza AG, Santos IMG. Color and structural analysis of Co x Zn7−x Sb2O12 pigments. Mater Res Bull. 2006;41:2049–56.

    Article  CAS  Google Scholar 

  9. Xavier CS, Candeia RA, Bernardi MIB, Lima SJG, Longo E, Paskocimas CA, et al. Effect of the modifier ion on the properties of MgFe2O4 and ZnFe2O4 pigments. J Therm Anal Calorim. 2007;87:709–13.

    Article  CAS  Google Scholar 

  10. Souza SC, Santos IMG, Silva MRS, Cássia-Santos MR, Soledade LEB, Souza AG. Influence of pH on iron doped Zn2TiO4 pigments. J Therm Anal Calorim. 2005;79:451–4.

    Article  CAS  Google Scholar 

  11. Pôrto SL, Longo E, Pizani PS, Boschi TM, Simões LGP, Lima SJG, et al. Photoluminescence in the Ca x Sr1−x WO4 system at room temperature. J Solid State Chem. 2008;181:1876–81.

    Article  Google Scholar 

  12. Pehini MP. US Patent No. 3330697, July (1967).

  13. Gouveia DS, Rosenhaim R, de Maurera MAMA, Lima SJG, Paskocimas CA, Longo E, et al. Thermal study of Co x Zn7−x Sb2O12 spinel obtained by Pechini method using different alcohols. J Therm Anal Calorim. 2004;75:453–60.

    Article  CAS  Google Scholar 

  14. Gajbhiye NS, Prasad S. Thermal decomposition of hexahydrated nickel iron citrate. Thermochim Acta. 1996;285:325–36.

    Article  CAS  Google Scholar 

  15. Wang L-Y, Wu G-Q, Evans DG. Synthesis and characterization of a layered double hydroxide containing an intercalated nickel(II) citrate complex. Mater Chem Phys. 2007;104:133–40.

    Article  CAS  Google Scholar 

  16. Gajbhiye NS, Bhattacharya U, Darshane VS. Thermal decomposition of zinc–iron citrate precursor. Thermochim Acta. 1995;264:219–30.

    Article  CAS  Google Scholar 

  17. Dollimore D, Griffiths DL, Nicholson D. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J Chem Soc. 1963;488:2617–23.

    Article  Google Scholar 

  18. Lo Jacono M, Schiavello M, Cimino A. Structural, magnetic, and optical properties of nickel oxide supported on η- and γ-aluminas. J Phys Chem. 1971;75:1044–50.

    Article  Google Scholar 

  19. Lenglet M, Hochu F, Dürr J, Tuilier MH. Investigation of the chemical bonding in 3d8 nickel (II) charge transfer insulators (NiO, oxidic spinels) from ligand-field spectroscopy, Ni 2p XPS and X-ray absorption spectroscopy. Solid State Commun. 1997;104:793–8.

    Article  CAS  Google Scholar 

  20. Llusar R, Casarrubios M, Barandiarán Z, Seijo L. Ab initio model potential calculations on the electronic spectrum of Ni2+-doped MgO including correlation, spin-orbit and embedding effects. J Chem Phys. 1996;105:5321–30.

    Article  CAS  Google Scholar 

  21. Lin B-Z, Li Z, Xu B-H, He L-W, Liu X-Z, Ding C. First Strandberg-type polyoxotungstate compound: synthesis and characterization of organic–inorganic hybrid (H2en)(Hen)2[H2P2W5O23]·5.42H2O. J Mol Struct. 2006;825:87–92.

    Article  CAS  Google Scholar 

  22. Redfern SAT. Hard-mode infrared study of the ferroelastic phase transition in CuWO4–ZnWO4 mixed crystals. Phys Rev B Condens Matter Mater Phys. 1993;48:5761–5.

    CAS  Google Scholar 

  23. Hanuza J, Macalik L, Maczka M, Lutz ETG, van der Maas JH. Vibrational characteristics of the double oxygen bridge in the NaIn(WO4)2 and NaSc(WO4)2 tungstates with wolframite structure. J Mol Struct. 1999;511:85–106.

    Article  Google Scholar 

  24. Hanuza J, Maczka M, Hermanowicz K, Deren PJ, Strek W, Folcik L, et al. Spectroscopic properties and magnetic phase transitions in Scheelite MICr(MoO4)2 and Wolframite MICr(WO4)2 crystals, where MI = Li, Na, K, and Cs. J Solid State Chem. 1999;148:468–78.

    Article  CAS  Google Scholar 

  25. Hanuza J, Maczka M, Van der Mass JH. Vibrational properties of double tungstates of the MIMIII(WO4)2 family (MI = Li, Na, K; MIII = Bi, Cr). J Solid State Chem. 1995;117(1):177–88.

    Article  CAS  Google Scholar 

  26. Orhan E, Anicete-Santos M, Maurera MAMA, Pontes FM, Souza AG, Andrès J, et al. Towards an insight on the photoluminescence of disordered CaWO4 from a joint experimental and theoretical analysis. J Solid State Chem. 2005;178:1284–91.

    Article  CAS  Google Scholar 

  27. Frost RL, Duong L, Weier M. Raman microscopy of selected tungstate minerals. Spectrochim Acta Part A. 2004;60:1853–9.

    Article  Google Scholar 

  28. Nakamoto K, editor. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1980.

    Google Scholar 

  29. Nyquist RA, Kagel RO. Infrared spectra of inorganic compounds. London: Academic Press, Inc.; 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. M. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, A.L.M., Ferreira, J.M., Silva, M.R.S. et al. Influence of the thermal treatment in the crystallization of NiWO4 and ZnWO4 . J Therm Anal Calorim 97, 167–172 (2009). https://doi.org/10.1007/s10973-009-0244-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0244-8

Keywords

Navigation