Skip to main content
Log in

Influence of polymer solution on the morphology and local structure of NH4ZnPO4 powders synthesized by a simple precipitation method at room temperature

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

NH4ZnPO4 powders were synthesized using a simple precipitation method at room temperature. The effects of polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), glucose, and hexadecyltrimethylammonium bromide (CTAB) solutions on the morphology and structure of the prepared samples were investigated. The phase composition and morphology of the prepared samples were characterized using X-ray diffraction and scanning electron microscopy, respectively. Depending on the polymer sources, the hexagonal structure prepared using non-surfactant of water completely changed to monoclinic structure when CTAB was added. X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) were performed to study the local structure and surface electronic structure of the prepared samples, confirming that the oxidation states of P and Zn ions are 5+ and 2+, respectively. On the basis of the results of inductively coupled plasma atomic emission spectroscopy (ICP-OES), the NH4ZnPO4 powders can be classified as a slow-release fertilizer where less than 15% of the ions were released in 24 h. A simple precipitation method using water, PVP, PVA, sucrose, and CTAB as a template can be used to synthesize NH4ZnPO4 powders. In addition, this method may be extended for the preparation of other oxide materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Zhang, E.A. Davidson, D.L. Mauzerall, T.D. Searchinger, P. Dumas, and Y. Shen, Managing nitrogen for sustainable development, Nature, 528(2015), No. 7580, p. 51.

    Article  CAS  Google Scholar 

  2. F. Zulfiqar, M. Navarro, M. Ashraf, N.A. Akram, and S. Munné-Bosch, Nanofertilizer use for sustainable agriculture: Advantages and limitations, Plant Sci., 289(2019), art. No. 110270.

  3. H. Pang, Z.Z. Yan, W.Q. Wang, Y.Y. Wei, X.X. Li, J. Li, J. Chen, J.S. Zhang, and H.H. Zheng, Template-free controlled fabrication of NH4MnPO4·H2O and Mn2P2O7 micro-nanostructures and study of their electrochemical properties, Int. J. Electrochem. Sci., 7(2012), No. 12, p. 12340.

    CAS  Google Scholar 

  4. X.G. Wang, S.Y. Lü, C.M. Gao, X.B. Xu, Y. Wei, X. Bai, C. Feng, N.N. Gao, M.Z. Liu, and L. Wu, Biomass-based multifunctional fertilizer system featuring controlled-release nutrient, water-retention and amelioration of soil, RSC Adv., 4(2014), No. 35, p. 18382.

    Article  CAS  Google Scholar 

  5. G.L. Bridger, M.L. Salutsky, and R.W. Starostka, Micronutrient sources, metal ammonium phosphates as fertilizers, J. Agric. Food Chem., 10(1962), No. 3, p. 181.

    Article  CAS  Google Scholar 

  6. M. Kalbasi, G.J. Racz, and L.A. Lewen-Rudgers, Reaction products and solubility of applied zinc compounds in some Manitoba soils, Soil Sci., 125(1978), No. 1, p. 55.

    Article  CAS  Google Scholar 

  7. L.M. Lapina, Metal ammonium phosphates and their new applications, Russ. Chem. Rev., 37(1968), No. 9, p. 693.

    Article  Google Scholar 

  8. A.Q. Yuan, J. Wu, L.J. Bai, S.M. Ma, Z.Y. Huang, and Z.F. Tong, Standard molar enthalpies of formation for ammonium/3d-transition metal phosphates NH4MPO4·H2O (M = Mn2+, Co2+, Ni2+, Cu2+), J. Chem. Eng. Data, 53(2008), No. 5, p. 1066.

    Article  CAS  Google Scholar 

  9. H. Pang, Z.Z. Yan, W.Q. Wang, J. Chen, J.S. Zhang, and H.H. Zheng, Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor, Nanoscale, 4(2012), No. 19, p. 5946.

    Article  CAS  Google Scholar 

  10. K. Byrappa, C.K. Chandrashekar, B. Basavalingu, K.M. LokanathaRai, S. Ananda, and M. Yoshimura, Growth, morphology and mechanism of rare earth vanadate crystals under mild hydrothermal conditions, J. Cryst. Growth, 306(2007), No. 1, p. 94.

    Article  CAS  Google Scholar 

  11. W.T.A. Harrison, A.N. Sobolev, and M.L.F. Phillips, Hexagonal ammonium zinc phosphate, (NH4)ZnPO4, at 10 K, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 57(2001), No. 5, p. 508.

    Article  CAS  Google Scholar 

  12. B. Yan and J.F. Gu, Morphology controlled solvo-thermal synthesis and luminescence of NH4ZnPO4: Eu3+ submicrometer phosphor, J. Alloys Compd., 479(2009), No. 1–2, p. 536.

    Article  CAS  Google Scholar 

  13. D. Yue, W. Lu, L. Jin, C.Y. Li, W. Luo, M.N. Wang, Z.L. Wang, and J.H. Hao, Controlled synthesis, asymmetrical transport behavior and luminescence properties of lanthanide doped ZnO mushroom-like 3D hierarchical structures, Nanoscale, 6(2014), No. 22, p. 13795.

    Article  CAS  Google Scholar 

  14. X.M. Sun, X. Chen, Z.X. Deng, and Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Mater. Chem. Phys., 78(2003), No. 1, p. 99.

    Article  Google Scholar 

  15. G.W. Rehm, R.A. Wiese, and G.W. Hergert, Response of corn to zinc source and rate of zinc band applied with either orthophosphate or polyphosphate, Soil Sci., 129(1980), No. 1, p. 36.

    Article  CAS  Google Scholar 

  16. Y. Li, Q.Y. Liu, and W.J. Shen, Morphology-dependent nanocatalysis: Metal particles, Dalton Trans., 40(2011), No. 22, p. 5811.

    Article  CAS  Google Scholar 

  17. Z. Amghouz, B. Ramajo, S.A. Khainakov, I. da Silva, G.R. Castro, J.R. García, and S. García-Granda, Dimensionality changes in the solid phase at room temperature: 2D → 1D → 3D evolution induced by ammonia sorption-desorption on zinc phosphates, Chem. Commun., 50(2014), No. 51, p. 6729.

    Article  CAS  Google Scholar 

  18. N.T.K. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev., 114(2014), No. 15, p. 7610.

    Article  CAS  Google Scholar 

  19. Q. Chen, Y.Q. Wang, M.Y. Zheng, H. Fang, and X. Meng, Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response, J. Mater. Sci.: Mater. Electron., 29(2018), No. 23, p. 19757.

    CAS  Google Scholar 

  20. D.D. Patel and B.D. Anderson, Maintenance of supersaturation II: Indomethacin crystal growth kinetics versus degree of supersaturation, J. Pharm. Sci., 102(2013), No. 5, p. 1544.

    Article  CAS  Google Scholar 

  21. T.T. Jiang, Y.Q. Wang, D.W. Meng, X.L. Wu, J.X. Wang, and J.Y. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Appl. Surf. Sci., 311(2014), p. 602.

    Article  CAS  Google Scholar 

  22. Y.Q. Wang, T.T. Jiang, D.W. Meng, J. Yang, Y.C. Li, Q. Ma, and J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties, Appl. Surf. Sci., 317(2014), p. 414.

    Article  CAS  Google Scholar 

  23. M.Y. Zhu, Y. Wang, D.H. Meng, X.Z. Qin, and G.W. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties, J. Phys. Chem. C, 116(2012), No. 30, p. 16276.

    Article  CAS  Google Scholar 

  24. Z.F. Jiang, J.M. Xie, D.L. Jiang, X.J. Wei, and M. Chen, Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction, CrystEngComm, 15(2013), No. 3, p. 560.

    Article  CAS  Google Scholar 

  25. A. Kyrychenko, D.A. Pasko, and O.N. Kalugin, Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: The role of polymer size and structure, Phys. Chem. Chem. Phys., 19(2017), No. 13, p. 8742.

    Article  CAS  Google Scholar 

  26. X.H. Sun, C.M. Zheng, F.X. Zhang, Y.L. Yang, G.J. Wu, A.M. Yu, and N.J. Guan, Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method, J. Phys. Chem. C, 113(2009), No. 36, p. 16002.

    Article  CAS  Google Scholar 

  27. N. Treesukkasem, C. Chokradjaroen, S. Theeramunkong, N. Saito, and A. Watthanaphanit, Synthesis of Au nanoparticles in natural matrices by liquid-phase plasma: Effects on cytotoxic activity against normal and cancer cell lines, ACS Appl. Nano Mater., 2(2019), No. 12, p. 8051.

    Article  CAS  Google Scholar 

  28. Y.C. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H.B. Su, and Z.P. Lai, Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants, CrystEngComm, 13(2011), No. 23, p. 6937.

    Article  CAS  Google Scholar 

  29. T. Asgari-Vadeghani, D. Ghanbari, M.R. Mozdianfar, M. Salavati-Niasari, S. Bagheri, and K. Saberyan, Sugar and surfactant-assisted synthesis of Mg(OH)2 nano-flower and PVA nanocomposites, J. Clust. Sci., 27(2016), No. 1, p. 299.

    Article  CAS  Google Scholar 

  30. M.E. Trenkel, Slow- and Controlled-release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, International fertilizer industry Association, Paris, 2010, p. 14.

    Google Scholar 

  31. P. Li, Z.P. Xu, M.A. Hampton, D.T. Vu, L.B. Huang, V. Rudolph, and A.V. Nguyen, Control preparation of zinc hydroxide nitrate nanocrystals and examination of the chemical and structural stability, J. Phys. Chem. C, 116(2012), No. 18, p. 10325.

    Article  CAS  Google Scholar 

  32. M. Yuvaraj and K.S. Subramanian, Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell, Soil Sci. Plant Nutr., 61(2015), No. 2, p. 319.

    Article  CAS  Google Scholar 

  33. M. Yuvaraj and K.S. Subramanian, Development of slow release Zn fertilizer using nano-zeolite as carrier, J. Plant Nutr., 41(2018), No. 3, p. 311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand for XPS and XANES facilities. This work was supported by Suranaree University of Technology (SUT)-PhD Fund from Suranaree University of Technology. This work was also supported by the SUT and by the Office of the Higher Education Commission under NRU Project of Thailand, Suranaree University of Technology, Nakhon Ratchasima, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phumying, S., Sichumsaeng, T., Kidkhunthod, P. et al. Influence of polymer solution on the morphology and local structure of NH4ZnPO4 powders synthesized by a simple precipitation method at room temperature. Int J Miner Metall Mater 29, 298–304 (2022). https://doi.org/10.1007/s12613-020-2208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2208-8

Keywords

Navigation