Skip to main content
Log in

Evolved gas analyses on a mixed valence copper(I,II) complex salt with thiosulfate and ammonia by in situ TG-EGA-FTIR and TG/DTA-EGA-MS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of a mixed valence copper salt, Na4[Cu(NH3)4][Cu(S2O3)2]2·0.5NH3 (1) prepared from pentahydrates of sodium thiosulfate and copper sulphate of various molar ratios in 1:1 v/v aqueous ammonia solution, has been studied up to 1,000 °C in flowing air by simultaneous thermogravimetric and differential thermal analysis coupled online with quadrupole mass spectrometer (TG/DTA-MS) and FTIR spectrometric gas cell (TG-FTIR), in comparison. Compound 1 releases first but very slowly some of the included ammonia till 170 °C, then simultaneously ammonia (NH3) and sulphur dioxide (SO2) from 175 to 225 °C, whilst the evolution of SO2 from thiosulfate ligands continues in several overlapping stages until 410 °C, and is escorted by explicit exothermic heat effects at around 237, 260, 358 and 410 °C. The former two exothermic DTA-peaks correspond to the simultaneous degradation and air oxidation processes of excess thiosulfate anions not reacted by formation of copper sulfides (both digenite, Cu1.8S and covellite, CuS, checked by XRD) and sodium sulfate, while the last two exothermic peaks are accompanied also by considerable mass gains, as the result of two-step oxidation of copper sulfides into various oxosulfates. The mass increase continues further on until 580 °C, when the sample mass begins to decrease slowly, as a continuous decomposition of the intermediate copper oxosulfates, indicated also by re-evolution of SO2. At 1,000 °C, a residual mass value of 64.3% represents a stoichiometric formation of CuIIO and anhydrous Na2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aylmore MG, Muir DM. Thiosulfate leaching of gold – a review. Miner Eng. 2001;14:135–74, and references therein.

    Article  CAS  Google Scholar 

  2. Umetsu Y, Tosawa K. Dissolution of gold in ammoniacal sodium thiosulfate solution. Bull Res Inst Miner Dress Metall. 1972;28:15, and references therein.

    Google Scholar 

  3. Rábai G, Epstein IR. Series systematic design of chemical oscillators. 83. Equilibria and kinetics of the fast interaction between copper(II) and thiosulfate ions in aqueous solution. Inorg Chem. 1992;31:3239–42.

    Article  Google Scholar 

  4. Ferrari A, Braibanti A, Tiripicchio A. The crystal structure of tetrasodium tetraamminecopper(II) di-catena-di-μ-thiosulphato-cuprate(I). Acta Crystallogr. 1966;21:605–10.

    Article  CAS  Google Scholar 

  5. Morosin B, Larson AC. The crystal structures of copper tetrammine complexes, B. Na4[Cu(NH3)4][Cu(S2O3)2]2·NH3. Acta Crystallogr B. 1969;B25:1417–9.

    Article  Google Scholar 

  6. Hathaway BJ, Stephens F. The electronic properties and crystal structure of Na4[Cu(NH3)4][Cu(S2O3)2]2·L (L = H2O or NH3). J Chem Soc A. 1970;6:884–8.

    Article  Google Scholar 

  7. Tomlinson AAG, Hathaway BJ, Billing DE, Nichols P. Electronic properties and stereochemistry of the copper(II) ion. V. Tetra-ammine complexes. J Chem Soc A. 1969;1:65–71.

    Article  Google Scholar 

  8. Drake RF, Hatfield WE. Magnetic studies of tetrasodium tetraamminecopper(II) di-catena-di-μ-thiosulfatocuprate(I) monoammoniate. J Inorg Nucl Chem. 1974;36:2489–91.

    Article  CAS  Google Scholar 

  9. Newman GA. Infrared spectra of tetrasodium tetrammine copper(II) dicatena-di-μ-thiosulfato-cuprate(I) and related complexes. J Mol Struct. 1970;5:61–6.

    Article  CAS  Google Scholar 

  10. Gabelica Z. Reexamination of the infrared spectra of complex thiosulfates of the type Reexamination of the infrared spectra of complex thiosulfates of the type Na4[MII(NH3)4][MI(S2O3)2]2·L (MII = Cu, Ni; MI = Cu, Ag; L = H2O, NH3). Ann Soc Sci Brux. 1977;91:243–54.

    CAS  Google Scholar 

  11. NIST Chemistry Webbook Standard Reference Database No 69, June 2009 Release, (http://webbook.nist.gov/chemistry).

  12. Madarász J, Pokol G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J Therm Anal Calorim. 2007;88:329–36.

    Article  Google Scholar 

  13. Inorganic Crystal Structure Database (ICSD), Fachinformationszentrum Karlsruhe (FIZ) and National Institute of Standards and Technology (NIST), Version Release 2008/1.

  14. International Centre for Diffraction Data (ICDD), Powder Diffraction File (PDF), PDF-2 Release 2007.

  15. Bombicz P, Madarász J, Forizs E, Foch I. Structure and thermal behaviour of (SPY-5-12)-(2-aminoethanol-N)-(2-aminoethanol-N,O)bis(theophyllinato)copper(II) dihydrate, a model for DNA-metal interactions. Polyhedron. 1997;16:3601–7.

    Article  CAS  Google Scholar 

  16. Madarász J, Okuya M, Kaneko S. Preparation of covellite and digenite thin films by an intermittent spray pyrolysis deposition method. J Eur Cer Soc. 2001;21:2113–6.

    Article  Google Scholar 

  17. Madarász J, Bombicz P, Okuya M, Kaneko S. Thermal decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis deposition of sulfide thin films. Solid State Ionics. 2001;141–142:439–46.

    Article  Google Scholar 

  18. Krunks M, Leskelä T, Mannonen R, Niinistö L. Thermal decomposition of copper(I) thiocarbamide chloride hemihydrate. J Therm Anal Calorim. 1998;53:355–64.

    Article  CAS  Google Scholar 

  19. Krunks M, Leskelä T, Mutikainen I, Niinistö L. Thermoanalytical study of copper(I) thiocarbamide compounds. J Therm Anal Calorim. 1999;56:479–84.

    Article  CAS  Google Scholar 

  20. Dunn JG, Muzenda C. Thermal oxidation of covellite (CuS). Thermochim Acta. 2001;369:117–23.

    Article  CAS  Google Scholar 

  21. Dunn JG, Muzenda C. Quantitative analysis of phases formed during the oxidation of covellite (CuS). J Therm Anal Calorim. 2001;64:1241–6.

    Article  CAS  Google Scholar 

  22. Zivkovic Z, Strbac N, Zivkovic D, Velinovski V, Mihajlovic I. Kinetic study and mechanism of chalcocite and covellite oxidation process. J Therm Anal Calorim. 2005;79:715–20.

    Article  CAS  Google Scholar 

  23. Simonescu CM, Teodorescu VS, Carp O, Patron L, Capatina C. Thermal behaviour of CuS (covellite) obtained from copper-thiosulfate system. J Therm Anal Calorim. 2007;88:71–6.

    Article  CAS  Google Scholar 

  24. Shan J, Pukkinen P, Vainio U, Maijala J, Jiang H, Serimaa R, et al. Synthesis and characterization of copper sulfide nanocrystallites with low sintering temperatures. J Mater Chem. 2008;18:3200–8.

    Article  CAS  Google Scholar 

  25. Patron L, Carp O, Mindru I, Pascu M, Stanica N, Ciupina V, Segal E, Brezeanu M. Two novel copper coordination compounds with thiosulfate anions as ligands. J Therm Anal Calorim. 2003;72:271–279.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The purchase of our new HT-XRD apparatus has been supported by the EU (GVOP-3.2.1.-2004-04-0224, KMA) and Hungarian Government, what is gratefully thanked. The authors thank also Oana Carp (Roumanian Academy, Institute of Physical Chemistry Ilie Murgulescu) for bringing the Cu(II) - thiosulfate system [25] into the focus of attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Madarász.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madarász, J. Evolved gas analyses on a mixed valence copper(I,II) complex salt with thiosulfate and ammonia by in situ TG-EGA-FTIR and TG/DTA-EGA-MS. J Therm Anal Calorim 97, 111–116 (2009). https://doi.org/10.1007/s10973-009-0236-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0236-8

Keywords

Navigation