Skip to main content
Log in

Obtaining of Ni0.65Zn0.35Fe2O4 nanoparticles at low temperature starting from metallic nitrates and polyols

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article presents a study on obtaining Ni, Zn ferrite starting from Fe(III), Ni (II), Zn (II) nitrates and some polyols: 1,2-propane diol, 1,3-propane diol and glycerol. While heating, a redox reaction takes place between nitrate anion and polyol, with formation of carboxylate type precursors. The obtained precursors have been investigated by thermal analysis, FT-IR spectrometry and atomic absorption spectroscopy. The thermal decomposition of the synthesized precursors up to 350 °C leads to the formation of Ni, Zn ferrite as unique phase, evidenced by XRD. The average diameter of the ferrite crystallites, estimated from XRD data, takes values within the range 20–50 nm, depending on the annealing temperature. Transmission Electron Microscopy has evidenced the obtaining of spherical, agglomerated nanoparticles. The magnetic properties of the synthesized samples, measured in cvasistatic magnetic field (50 Hz) are characteristic for the Ni, Zn ferrite nanoparticles, with narrow hysteresis cycle and values of the saturation magnetization <70 emu/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Costa ACFM, Tortella E, Morelli MR, Kiminami RHGA. Synthesis, microstructure and magnetic properties of Ni–Zn ferrites. J Magn Magn Mater. 2003;256:174–82.

    Article  CAS  Google Scholar 

  2. Eftekhari A, Molaei F, Arami H. Flower-like bundles of ZnO nanosheets as an intermediate between hollow nanosphere and nanoparticles. Mater Sci Eng: A. 2006;437:446–50.

    Article  Google Scholar 

  3. Illy-Cherrey S, Tillement O, Dubois JM, Massicot F, Fort Y, Ghanbaja J, et al. Synthesis and characterization of nano-sized nickel(II), copper(I) and zinc(II) oxide nanoparticles. Mater Sci Eng: A. 2002;338:70–5.

    Article  Google Scholar 

  4. More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazinate precursor. J Therm Anal Calorim. 2008;94:63–7.

    Article  CAS  Google Scholar 

  5. Randhawa BS, Kaur M. A comparative study on the thermal decomposition of some transition metal maleates and fumarates. J Therm Anal Calorim. 2007;89:251–5.

    Article  CAS  Google Scholar 

  6. Carp O, Segal E, Brezeanu M, Barjega R, Staniac N. Nonconventional methods for obtaining hexaferrites. J Therm Anal Calorim. 1997;50:125–35.

    Article  CAS  Google Scholar 

  7. Bakalova A. Thermal and spectroscopic investigation of new binuclear Pt(II) complexes with carboxylic acids. J Therm Anal Calorim. 2009;96:593–7.

    Article  CAS  Google Scholar 

  8. Logvinenko VA. Thermoanalytical approach to the study of the kinetic and thermodynamic stability of coordination compounds and clathrates. J Therm Anal Calorim. 1990;36:1973–80.

    Article  CAS  Google Scholar 

  9. Stefanescu M, Sasca V, Birzescu M. Thermal behaviour of the homopolynuclear glyoxylate complex combinations with Cu(II) and Cr(III). J Therm Anal Calorim. 2003;72:515–24.

    Article  CAS  Google Scholar 

  10. Kingsley JJ, Patil KC. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater Lett. 1988;6:427–32.

    Article  CAS  Google Scholar 

  11. Deka S, Joy PA. Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Mater Chem Phys. 2006;100:98–101.

    Article  CAS  Google Scholar 

  12. Hwang C-C, Tsai JS, Huang T-H. Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater Chem Phys. 2005;93:330–6.

    Article  CAS  Google Scholar 

  13. Mangalaraja RV, Ananthakumar S, Manohar P, Gnanam FD. Initial permeability studies of Ni–Zn ferrites prepared by flash combustion technique. Mater Sci Eng: A. 2003;355:320–4.

    Article  Google Scholar 

  14. Sorescu M, Diamandescu L, Peelamedu R, Roy R, Yadoji P. Structural and magnetic properties of NiZn ferrites prepared by microwave sintering. J Magn Magn Mater. 2004;279:195–201.

    Article  CAS  Google Scholar 

  15. Anil Kumar PS, Shrotri JJ, Kulkarni SD. Low temperature synthesis of Ni0.8Zn0.2Fe2O4 powder and its characterization. Mater Lett. 1996;27:293–6.

    Article  CAS  Google Scholar 

  16. Wu KH, Chang YC, Chang TC. Effects of SiO2 content and solution pH in raw materials on Ni–Zn ferrite magnetic properties. J Magn Magn Mater. 2004;283:380–4.

    Article  CAS  Google Scholar 

  17. Abdeen AM. Electric conduction in Ni–Zn ferrites. J Magn Magn Mater. 1998;185:199–206.

    Article  CAS  Google Scholar 

  18. Arshak KI, Ajina A, Egan D. Development of screen-printed polymer thick film planner transformer using Mn–Zn ferrite as core material. Microelectron J. 2001;32:113–6.

    Article  CAS  Google Scholar 

  19. Bhise BV, Dongare MB, Patil SA. X-ray infrared and magnetization studies on Mn substituted Ni-Zn ferrites. J Mater Sci Lett. 1991;10:922–4.

    Article  CAS  Google Scholar 

  20. Caizer C, Ştefănescu M. Magnetic characterization of nanocrystalline Ni–Zn ferrite powder prepared by the glyoxylate precursor method. J Phys D. 2002;35:3035–40.

    Article  CAS  Google Scholar 

  21. Niculescu M, Vaszilcsin N, Bîrzescu M, Budrugeac P, Segal E. Thermal and structural investigation of the reaction between 1,2-propanediol and Ni(NO3)2.6H2O. J Therm Anal Calorim. 2001;63:181–5.

    Article  CAS  Google Scholar 

  22. McMorn P, Roberts G, Hutchings GJ. Oxidation of glycerol with hydrogen peroxide using silicalite and aluminophosphate catalysts. Catal Lett. 1999;63:193–7.

    Article  CAS  Google Scholar 

  23. Nakamoto K. Infrared spectra of inorganic and coordination compounds. New York: Wiley; 1970. pp. 201, 199, 159, 217.

  24. Prasad R, Sulaxna, Kumar A. Kinetics of thermal decomposition of iron(iii) dicarboxylate complexes. J Therm Anal Calorim. 2005;81:441–50.

    Article  CAS  Google Scholar 

  25. Dranca I, Lupascu T, Sofransky V, Popa V, Vass M. Thermoanalytical study of some salts of 3d metals with d-tartaric acid. J Therm Anal Calorim. 1996;46:1403–12.

    Article  CAS  Google Scholar 

  26. Zelenak V, Vargova Z, Gyoryova K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim Acta A. 2007;66:262–72.

    Article  CAS  Google Scholar 

  27. Stefanescu M, Stefanescu O, Stoia M, Lazau C. Thermal decomposition of some metalorganic precursors: Fe2O3 nanoparticles. J Therm Anal Calorim. 2007;88:27–32.

    Article  CAS  Google Scholar 

  28. Suryanarayana C, Grant Norton M. X-ray diffraction. A practical approach. New York, London: Plenum Press; 1998.

    Google Scholar 

  29. JCPDS—International Center for Diffraction Data; 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Stefanescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanescu, M., Stoia, M., Stefanescu, O. et al. Obtaining of Ni0.65Zn0.35Fe2O4 nanoparticles at low temperature starting from metallic nitrates and polyols. J Therm Anal Calorim 99, 459–464 (2010). https://doi.org/10.1007/s10973-009-0168-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0168-3

Keywords

Navigation