Skip to main content
Log in

Physico-chemical changes taking place in gamma irradiated bovine globulins studied by thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Structural transformations induced in gamma and alpha globulins under influence of gamma irradiation using doses of 2.5 and 24 kGy were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG, DTG). Thermal decomposition of the globulins irradiated in water suspensions occurs at higher temperatures, in comparison to the reference non-irradiated samples. This was related to formation of covalent linkages in the irradiated proteins, apart to chemical changes induced in amino-acids. Essential modification of thermal decomposition was detected already after irradiation with a dose of 2.5 kGy performed for water suspensions. Irradiation of solid native proteins induces decrease in decomposition temperature and gives evidence of proteins degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kojima T, Bessho M, Furuta M, Okuda S, Hara M. Characterisation of biopolymer hydrogels produced by gamma-ray irradiation. Radiat Phys Chem. 2004;71:235–8.

    Article  CAS  Google Scholar 

  2. Cieśla K, Salmieri S, Lacroix M. Modification of the milk proteins films properties by gamma irradiation and starch polysaccharides addition. J Sci Food Agric. 2006;86:908–14.

    Article  Google Scholar 

  3. Jo C, Kang H, Lee N-Y, Kwon J-H, Byun M-W. Pectin and gelatin based film: effect of gamma irradiation on the mechanical properties and biodegradation. Radiat Phys Chem. 2005;72:745–50.

    Article  CAS  Google Scholar 

  4. Lee M, Lee S, Song K-B. Effect of gamma irradiation on the physicochemical properties of soy protein isolate films. Radiat Phys Chem. 2005;72:35–40.

    Article  CAS  Google Scholar 

  5. Letendre M, Aprano GD, Lacroix M, Salmieri S, St. Gelais D. Physico-chemical properties and bacterial resistance of biodegradable milk protein films containing agar and pectin. J Agric Food Chem. 2002;50:6017–22.

    Article  CAS  Google Scholar 

  6. Yu H, Sabato SF, Aprano GD, Lacroix M. Effect of the addition of CMC on the aggregation behaviour of proteins. Radiat Phys Chem. 2004;71:131–5.

    Article  CAS  Google Scholar 

  7. Assemand E, Lacroix M, Mateescu MA. Protective role of L-tyrosine in the sterilization of ceruloplasmin therapeutic protein by gamma irradiation. Radiat Phys Chem. 2004;71:405–9.

    Article  CAS  Google Scholar 

  8. Furuta M. Irradiation effects of hydrases for biomedical application. Radiat Phys Chem. 2002;57:455–7.

    Article  Google Scholar 

  9. Outtara B, Giroux M, Yefsah R, Smogarewicz W, Saucier L, Borsa J, et al. Microbiological and biochemical characteristics of ground beef as affected by gamma irradiation, food additives and edible coating film. Radiat Phys Chem. 2002;63:299–304.

    Article  Google Scholar 

  10. Lee J-W, Yook HS, Lee KH, Kim WJ, Byun MW. Conformational changes of myosin after gamma irradiation. Radiat Phys Chem. 2000;58:271–7.

    Article  CAS  Google Scholar 

  11. Byun MW, Lee J-W, Yook HS, Jo C, Kim HY. Application of gamma irradiation for inhibition of food allergy. Radiat Phys Chem. 2002;63:369–70.

    Article  CAS  Google Scholar 

  12. Byun MW, Son J-H, Yook H-S, Jo C, Kim HY. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang. Radiat Phys Chem. 2002;64:245–8.

    Article  CAS  Google Scholar 

  13. International Consultative Group on Food Irradiation. Review of data on high dose (10–70 kGy) irradiation of food, Karlsruhe 29 Aug–2 Sept 1994. WHO/FNU/-FOS/95.10; 1994.

  14. Bachman S. Radioliza białek. In: Kroh J, editor. Chemia Radiacyjna. Warszawa: Państwowe Wydawnictwo Naukowe;1970. p. 404–407.

  15. Joint FAO/IAEA Division of Nuclear Techniques in Food Agriculture. Analytical detection methods for irradiated foods: a review of current literature, IAEA-TECDOC-587, IAEA; 1991.

  16. Masłowska J, Malicka M. Thermal behaviour of riboflavin. J Therm Anal. 1988;34:3–9.

    Article  Google Scholar 

  17. Garcia Alonso I. Thermoanalytical studies on lobster shell. J Therm Anal. 1983;27:257–62.

    Article  CAS  Google Scholar 

  18. Cricton JS, Findin WM. A thermoanalytical study of treated wools. J Therm Anal. 1977;11:305–21.

    Article  Google Scholar 

  19. Garcia Alonso I, León Fernández OS, Henriquez RD. Utilization of thermal analysis in gorgonia characterisation. J Therm Anal. 1984;29:167–71.

    Article  CAS  Google Scholar 

  20. Bihari-Varga M. The application of thermoanalytical methods in the investigation of biological substances. J Therm Anal. 1982;23:7–13.

    Article  CAS  Google Scholar 

  21. Bihari-Varga M. Thermoanalytical studies on protein–polysaccharide complexes of connective tissues. J Therm Anal. 1975;7:675–83.

    Article  CAS  Google Scholar 

  22. Swain SN, Rao KK, Nayak PL. Biodegradable polymers. Part II. Thermal degradation of biodegradable plastics cross-linked from formaldehyde-soy protein concentrate. J Therm Anal Calorim. 2005;79:33–8.

    Article  CAS  Google Scholar 

  23. Nanda PK, Rao KK, Kar RK, Nayak PL. Biodegradable polymers. J Therm Anal Calorim. 2007;89:935–40.

    Article  CAS  Google Scholar 

  24. Macedo RO, de Moura OM, de Souza AG, Macedo AMC. Comparative studies of some analytical methods. Thermal decomposition of powder milk. J Therm Anal Calorim. 1997;49:857–62.

    Article  CAS  Google Scholar 

  25. Purevsuren B, Davaajav Y. Investigation on pyrolysis of casein. J Therm Anal Calorim. 2001;66:743–8.

    Article  CAS  Google Scholar 

  26. Galvano S, Casu S, Martino M, Di Palma E, Portofino S. Thermal and kinetic study of tyre waste pyrolysis via TG-FTIR-MS analysis. J Therm Anal Calorim. 2007;88:507–14.

    Article  Google Scholar 

  27. Na D, Yu-feng Z, Yan W. Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition. Waste Manag. 2008;28:1572–80.

    Article  Google Scholar 

  28. Cieśla K, Roos Y, Głuszewski W. Denaturation of gamma irradiated proteins by differential scanning calorimetry. Radiat Phys Chem. 2000;58:233–43.

    Article  Google Scholar 

  29. Cieśla K. Application of thermal analysis methods in the studies of irradiated proteins. In: Proceedings of the domestic symposium on radiation techniques in industry, medicine, agriculture and environmental protection, April 24–27, 1994, Rynia, Poland. Warszawa: Institute of Nuclear Chemistry and Technology; 1995, p. 148–152.

  30. K Cieśla, Vansant EF, Świderska-Kowalczyk M. Thermal decomposition of gamma irradiated proteins by thermal analysis methods. In: Annual report of the Institute of Nuclear Chemistry and Technology. Warsaw, Poland: Institute of Nuclear Chemistry and Technology; 1995, p. 33–34.

  31. Olaffson PG, Bryan AM. Evaluation of thermal decomposition temperature of amino-acids by differential enthalpic analysis. Microchim Acta. 1970;5:871–8.

    Article  Google Scholar 

  32. Chen S, Yang X, Gao Sh, Hu R, Shi Q. Thermochemistry of the complexes of chromium nitrate with l-a-amino acids. J Therm Anal Calorim. 2004;76:265–74.

    Article  CAS  Google Scholar 

  33. Wesołowski M, Erecińska J. Relation between chemical structure of amino-acids and their thermal decomposition. Analysis of the data by principal component analysis. J Therm Anal Calorim. 2006;82:307–13.

    Article  Google Scholar 

  34. Bujdák J, Rode BM. Alumina catalyzed reactions of amino-acids. J Therm Anal Calorim. 2003;73:797–805.

    Article  Google Scholar 

  35. Patron L, Marinescu G, Culita D, Diamadescu L, Carp O. Thermal stability of amino -acid-(tyrosine and tryptophan) coated magnetites. J Therm Anal Calorim. 2008;91:627–32.

    Article  CAS  Google Scholar 

  36. Ambe KS, Kumta US, Tappel AI. Radiation damage to cytochrome C and haemoglobin. Radiat Res. 1961;15:709–19.

    Article  CAS  Google Scholar 

  37. Nisizawa MJ. Radiation induced sol–gel transitions of protein: effects of radiation induced sol–gel transition on amino-acid composition and viscosity. Appl Polym Sci. 1988;36:979–81.

    Article  CAS  Google Scholar 

  38. Kume T, Matsuda T. Changes in structural and antigenic properties of proteins by radiation. Radiat Phys Chem. 1995;46:225–31.

    Article  CAS  Google Scholar 

  39. Jirgensons B. Albumins and globulins, vol. 1. In: Mark HF, Gaylord NG, Bikales NM, editors. Encyclopedia of polymer science and technology. New York, USA: Interscience Publishers; 1964, p. 584.

  40. Davies KJA, Delsignore ME. Protein damage and degradation by oxygen radicals. II. Modification of secondary and tertiary structure. J Biol Chem. 1987;262:9908–13.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Dr. Wojciech Głuszewski from the Institute of Nuclear Chemistry and Technology for gamma irradiation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna Cieśla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cieśla, K., Vansant, E.F. Physico-chemical changes taking place in gamma irradiated bovine globulins studied by thermal analysis. J Therm Anal Calorim 99, 315–324 (2010). https://doi.org/10.1007/s10973-009-0155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0155-8

Keywords

Navigation