Skip to main content
Log in

The evolution of structural and phase states of titanium aluminides after γ irradiation in small doses

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structural and phase state of powder samples of compounds Ti3Al and TiAl has been investigated experimentally before and after the action of small doses of gamma irradiation. To study phase and structure parameters, the X-ray diffractometry has been used. It has been established experimentally that after the same conditions of gamma irradiation structural states of these compounds differ. It has been revealed that for compound Ti3Al small doses of gamma irradiation serve stimulators to form radiation-induced states. In the irradiated TiAl sample, a crystal-lattice distortion was observed with the retention of a high crystallinity of the structure and no signs of a special radiation-induced state were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Parshin, M. I. Krivoruk, and V. B. Zvyagin, in Diffusion and Radiation Defects in Alloys (Izd. SZTU, St. Petersburg, 2005), pp. 271–275, [in Russian].

    Google Scholar 

  2. V. S. Khmelevskaya, N. Yu. Bogdanov, and K. A. Gorchakov, “Nanostructuring of metallic materials by intense ion beams,” Fiz. Khim. Obrab. Mater., No. 5, 5–11 (2008).

    Google Scholar 

  3. V. B. Zvyagin, in Some Aspects of the Performance of Structural Materials of the Principal Units of Nuclear and Thermonuclear Reactors (Izd. SZTU, St. Petersburg, 2005), pp. 276–279, [in Russian].

    Google Scholar 

  4. V. S. Khmelevskaya, N. Yu. Bogdanov, and M. N. Kordo, “Radiation-induced structuring in Nibased alloys,” Fiz. Khim. Obrab. Mater., No. 2, 14–18 (2008).

    Google Scholar 

  5. M. Nicholson, R. I. Barabash, P. Zschack, and G. E. Ice, “Diffuse X-ray scattering measurements of point defects and clusters in iron,” J. Nucl. Mater. 367–370, 269–275 (2007).

    Google Scholar 

  6. D. L. Gray and W. V. Cummings, ”An X-ray diffraction study of irradiated molybdenum,” Acta Metall. 8, 446–451 (1960).

  7. V. M. Kosenkov, X-ray Metallography in Reactor Materials Science (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  8. A. A. Katsnel’son, Yu. D. Goncharenko, R. B. Grabova, and V. M. Kosenkov, “X-ray study of metals irradiated by neutrons,” Fiz. Met. Metalloved. 57, 138–141 (1984).

    Google Scholar 

  9. C. Sudhakar, V. Rao, and J. Kuriacose, “Influence of irradiation on the catalytic properties of zinc oxide,” Radiat. Phys. Chem. 19, 101–105 (1982).

    Google Scholar 

  10. A. V. Gradoboev and A. A. Surzhikov, Radiation Resistance of Gallium Arsenide-based Microwave Devices (Izd. TPU, Tomsk, 2005) [in Russian].

    Google Scholar 

  11. A. P. Mamontov and I. P. Chernov, Effect of Small Doses of Ionizing Radiation (Del’taplan, Tomsk, 2009) [in Russian].

    Google Scholar 

  12. P. A. Bartolotta and D. L. Krause, “Titanium aluminide applications in the high speed civil transport (HSCT),” in Proc. 2nd Int. Symp.on Gamma Titanium Aluminides (California, San Diego, 1999).

    Google Scholar 

  13. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties (VILS–MATI, Moscow, 2009) [in Russian].

    Google Scholar 

  14. F. Appel, J. D. Heaton-Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Wenheim, 2011).

    Book  Google Scholar 

  15. R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook. Titanium Alloys (ASM Int. The Material Inform. Soc., 1994).

    Google Scholar 

  16. V. Yu. Filimonov, A. A. Sitnikov, A. V. Afanas’ev, M.V.Loginova, V. I. Yakovlev, A. Z. Negodyaev, D. V. Schreifer, and V. A. Solov’ev, “Microwave assisted combustion synthesis in mechanically activated 3Ti+Al powder mixtures: Structure formation issues,” Int. J. Self Propagating High Temperature Synthesis 23, 18–25 (2014).

    Article  Google Scholar 

  17. M. V. Loginova, V. Yu. Filimonov, V. I. Yakovlev, A. A. Sytnikov, A. Z. Negodyaev, and D. V. Shreifer, “Analysis of the influence of high temperature synthesis parameters on the structure formation in the mechanically activated 3Ti+Al powder mixture,” Appl. Mech. Mater. 788, 117–122 (2015).

    Article  Google Scholar 

  18. V. Yu. Filimonov, A. A. Sytnikov, V. I. Yakovlev, A. V. Afanasyev, and A. Z. Negodyaev, “The features of structure formation in mechanically activated powder mixture 3Ti+Al in the thermal explosion mode,” Appl. Mech. Mater. 621, 71–76 (2014).

    Article  Google Scholar 

  19. A. A. Popova, A. V. Sobachkin, I. V. Nazarov, V. I. Yakovlev, M. V. Loginova, A. A. Sitnikov, M. R. Sharafutdinov, and N. Z. Lyakhov, “Dynamic diffractometry of phase transformations during high temperature synthesis in mechanically activated powder systems in the thermal explosion mode,” Byull. Russ. Acad. Sci. Phys. 77, 120–122 (2013).

    Article  Google Scholar 

  20. N. P. Dikii, A. N. Dovbnya, E. P. Medvedeva, I. D. Fedorets, N. P. Khlapova, Yu. V. Lyashko, and D. V. Medvedev, “Photoluminescence and catalytic properties of gamma-activated ZnO nanoparticles,” J. Kharkiv Nat. Univ. 1059, 83–90 (2013).

    Google Scholar 

  21. S. T. Konobeevskii and F. P. Butra, in Action of Nuclear Radiation on Materials (1962), pp. 251–256, [in Russian].

    Google Scholar 

  22. V. S. Khmelevskaya and M. N. Kordo, “Radiationinduced phase and structural transformations in alloys of B–Ti–Cr and V–Fe systems,” Vopr. At. Nauki Tekhn. Materialov. Novye Mater. 72, 151–156 (2008).

    Google Scholar 

  23. D. Li and H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemospera 51, 129–137 (2003).

    Article  Google Scholar 

  24. A. A. Sitnikov, M. V. Loginova, V. I. Yakovlev, V. Yu. Filimonov, A. V. Afanas’ev, A. Z. Negodyaev, V. V. Solov’ev, D. V. Shreifer, and V. A. Korchagin, RF Patent 2557924, Method of production of single-phase intermetallic alloy based on aluminum–titanium system,” Byull. Izobr., 2015, no. 21.

  25. A. D. Ryabtsev and A. A. Troyanskii, “Study of possibility of formation of titanium–aluminum alloy by the method of electroflux remelting in an inert atmosphere under “active” calcium-containing fluxes,” Problemy Spets. Elektrometallurgii, No. 1, 3 (2000).

    Google Scholar 

  26. V. I. Itin and Yu. S. Naiborodenko, High Temperature Synthesis of Intermetallic Compounds (Izd. Tomsk. Univ., Tomsk, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Loginova.

Additional information

Original Russian Text © M.V. Loginova, V.I. Yakovlev, A.A. Sitnikov, A.V. Sobachkin, S.G. Ivanov, A.Z. Negodyaev, A.V. Gradoboev, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 2, pp. 180–185.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginova, M.V., Yakovlev, V.I., Sitnikov, A.A. et al. The evolution of structural and phase states of titanium aluminides after γ irradiation in small doses. Phys. Metals Metallogr. 118, 170–175 (2017). https://doi.org/10.1134/S0031918X17020089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17020089

Keywords

Navigation