Skip to main content
Log in

Comparison between the synthesis in molybdenum and antimony oxides system by high-temperature treatment and high-energy ball milling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interactions between MoO3 and Sb2O3 or α-Sb2O4 taking place in the solid state in air during high-temperature as well as mechanochemical treatments have been investigated. The high-energy ball milling of MoO3 with Sb2O3 converts α-Sb2O3 to β-Sb2O3 and leads to formation of Sb2MoO6 and Sb4Mo10O31 phases. They are the final products of thermal synthesis in an inert atmosphere but not in air. The solid solution of MoO3 in β-Sb2O4 was obtained in high-temperature reaction of MoO3 with Sb2O3 or α-Sb2O4 as well as by milling of mixture MoO3/α-Sb2O4 for 14 h. The milling resulted in higher than 3 mol% solubility of MoO3 in β-Sb2O4. The constructed phase diagram of MoO3–α-Sb2O4 system is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhou B, Chuang KT, Guo X. Role of Lewis and Brønsted sites in selective oxidation of propene on MoO3–Sb2O4 catalyst. J Chem Soc Faraday Trans. 1991;87:3695–702.

    Article  CAS  Google Scholar 

  2. Patterson WR. Oxygen spillover on Sb2O4/MoO3 mixtures: a comment on the use of 18O-labelled catalysts in hydrocarbon oxidation studies. J Mol Catal. 1991;65:L-41–L-43.

    CAS  Google Scholar 

  3. Castillo R, Dewacle K, Ruiz P, Delmon B. Mechanical mixtures of α-Sb2O4 and MoO3 as highly selective catalysts for the oxidation of methanol to formaldehyde. Appl Catal A. 1997;153:L1–L8.

    Article  CAS  Google Scholar 

  4. Wang L, Tsuda M, Eguchi K, Arai H, Seiyama T. The active species of Sb-Mo-O catalyst for the oxidative esterification of ethanol. Chem Lett. 1987;1889–1892.

  5. Zhou B, Ceckiewicz S, Delmon B. Synergy in N-ethylformamide dehydration by mixtures of MoO3 and α-Sb2O4. J Phys Chem. 1987;91:5061–7.

    Article  CAS  Google Scholar 

  6. Gaigneaux EM, Ruiz P, Delmon B. Further on the mechanism of the synergy between MoO3 and α-Sb2O4 in the selective oxidation of isobutene to methacrolein: reconstruction of MoO3 via spillover oxygen. Catal Today. 1996;32:37–46.

    Article  CAS  Google Scholar 

  7. Gaigneaux EM, Ruiz P, Wolf EE, Delmon B. Atomic force and scanning electron microscopic investigation of the operandi creation of selective sites on MoO3 mixed with α-Sb2O4 in the isobutene to methacrolein oxidation. Appl Surf Sci. 1997;121/122:552–7.

    Article  CAS  Google Scholar 

  8. Gaigneaux EM, Dieterle M, Ruiz P, Mestl G, Delmon B. Catalytic performances and stability of three Sb-Mo-O phases in the selective oxidation of isobutene to methacrolein. J Phys Chem B. 1998;102:10542–55.

    Article  CAS  Google Scholar 

  9. Martin D, Kaur P, Duprez D, Gaigneaux E, Ruiz P, Delmon B. Impact of surface mobility in selective oxidation. Isotopic exchange of 18O2 with 16O2 on various oxides: MoO3, SnO2 and Sb2O4. Catal Today. 1996;32:329–36.

    Article  CAS  Google Scholar 

  10. Mestl G, Ruiz P, Delmon B, Knoezinger H. In situ Raman spectroscopy characterization of 18O exchange in physical mixtures of antimony oxides and molybdenum oxide. J Phys Chem. 1994;98:11283–92.

    Article  CAS  Google Scholar 

  11. Teller RG, Antonio MR, Brazdil JF, Mehicic M, Grasselli RK. Stabilization of high-temperature antimony oxide with molybdenum incorporation. Structure of Mo-doped Sb2O4 by powder neutron diffraction and extended X-ray absorption fine structure spectroscopy. Inorg Chem. 1985;24:3370–5.

    Article  CAS  Google Scholar 

  12. Parmentier M, Courtois A, Gleitzer Ch. Le système Sb2O3–MoO3. Bull Soc Chem France. 1974;75–7.

  13. Schneemeyer LF, Spangler SE, Di Salvo FI, Waszczak JV. Preparation and properties of reduced bismuth and antimony molybdenum oxides. Mater Res Bull. 1984;19:525–9.

    Article  CAS  Google Scholar 

  14. Parmentier M, Gleitzer Ch, Tilley RJD. Etude du système Sb–Mo–O à 500°C: Mise en évidence de deux nouveaux oxydes de molybdène-antimoine. J Solid State Chem. 1980;31:305–11.

    Article  CAS  Google Scholar 

  15. Teller RG, Antonio MR, Brazdil JF, Grasselli RK. New materials synthesis: characterization of some metal-doped antimony oxides. J Solid State Chem. 1986;64:249–60.

    Article  CAS  Google Scholar 

  16. Walczak J, Filipek E, Bosacka M. Air medium reactions in the Sb2O3–MoO3 system. In: Proceedings of the VIth European Conference on Solid State Chemistry, Book of Abstracts, Zürich (1997) PB-50.

  17. Filipek E. The synthesis and physicochemical properties of new phases in the systems oxides V2O5, MoO3, α-Sb2O4 (in Polish), Ed. Office, Sz. Univ. Technol., 2007, ISBN 978-83-7457-025-1.

  18. Filipek E. Phase relations in the V2O5–MoO3–α-Sb2O4 system in the solid state in air atmosphere. J Therm Anal. 2001;64:1095–103.

    Article  CAS  Google Scholar 

  19. Avvakumov E, Senna M, Kosova N. Solid mechanochemical synthesis. Boston: Kluwer Academic Publishers; 2001.

    Google Scholar 

  20. Wieczorek-Ciurowa K, Gamrat K. Mechanochemical syntheses as an example of green processes. J Therm Anal Calorim. 2007;88:213–7.

    Article  CAS  Google Scholar 

  21. Wieczorek-Ciurowa K, Gamrat K. Some aspects of mechanochemical reactions. Mater Sci Pol. 2007;25:219–32.

    CAS  Google Scholar 

  22. Golunski SE, Nevelland TG, Pope MJ. Thermal stability and phase transition of the oxides of antimony. Thermochim Acta. 1981;51:153–68.

    Article  CAS  Google Scholar 

  23. Cody CA, Di Carlo L, Darlington RK. Vibrational and thermal study of antimony oxides. Inorg Chem. 1979;18:1572–6.

    Article  CAS  Google Scholar 

  24. Rogers D, Skapski AC. The crystal structure of β-Sb2O4: A new polymorph. In: Proceedings of the Chemical Society, London; 1964. p. 400–1.

  25. Berry FJ, Ren X. The formation of metal antimonates by mechanical milling and the conversion of α-Sb2O4 to β-Sb2O4. J Mater Sci. 2004;39:1179–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study has supported by the Ministry of Science and Higher Education (Poland), DS/2008-2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wieczorek-Ciurowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipek, E., Wieczorek-Ciurowa, K. Comparison between the synthesis in molybdenum and antimony oxides system by high-temperature treatment and high-energy ball milling. J Therm Anal Calorim 97, 105 (2009). https://doi.org/10.1007/s10973-009-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-009-0071-y

Keywords

Navigation