Skip to main content
Log in

Effect of MoO3 additions on the thermal stability and crystallization kinetics of PbO–Sb2O3–As2O3 glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present paper reports on the effect of MoO3 on the glass transition, thermal stability and crystallization kinetics for (40PbO–20Sb2O3–40As2O3)100−x –(MoO3) x (x = 0, 0.25, 0.5, 0.75 and 1 mol%) glasses. Differential scanning calorimetry (DSC) results under non-isothermal conditions for the studied glasses were reported and discussed. The values of the glass transition temperature (T g) and the peak temperature of crystallization (T p) are found to be dependent on heating rate and MoO3 content. From the compositional dependence and the heating rate dependence of T g and T p, the values of the activation energy for glass transition (E g) and the activation energy for crystallization (E c) were evaluated and discussed. Thermal stability for (40PbO–20Sb2O3–40As2O3)100−x –(MoO3) x glasses has been evaluated using various thermal stability criteria such as ΔT, H r , H g and S. Moreover, in the present work, the K r(T) criterion has been considered for the evaluation of glass stability from DSC data. The stability criteria increases with increasing MoO3 content up to x = 0.5 mol%, and decreases beyond this limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nalin M, Poulain M, Ribeiro JL, Messaddeq Y. Antimony oxide based glasses. J Non-Cryst Solids. 2001;284:110–6.

    Article  CAS  Google Scholar 

  2. Poirier G, Poulain M, Poulain M. Copper and lead halogeno-antimoniate glasses. J Non-Cryst Solids. 2001;284:117–22.

    Article  CAS  Google Scholar 

  3. Fargin E, Berthereau A, Cardinal T, Le Flem G, Ducasse L, Canioni L, et al. Optical non-linearity in oxide glasses. J Non-Cryst Solids. 1996;203:96–101.

    Article  CAS  Google Scholar 

  4. Little Flower G, Sahaya Baskaran G, Krishna Mohan N, Veeraiah N. The structural role of tungsten ions in PbO–Sb22O3–As2O3 glass-system by means of spectroscopic investigations. Mater Chem Phys. 2006;100:211–6.

    Article  Google Scholar 

  5. Terashima K, Hashimoto T, Uchino T, Yoko T. Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses. J Ceram Soc Jpn. 1996;104:1008–14.

    CAS  Google Scholar 

  6. Wells A. Structural inorganic chemistry. 4th ed. Oxford: Clarendon Press; 1975. p. 88.

    Google Scholar 

  7. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry. New York: Wiley; 1999. p. 493.

    Google Scholar 

  8. Sabadel JC, Armand P, Cachau-Herreillat D, Baldeck P, Doclot O, Ibanez A, et al. Structural and nonlinear optical characterizations of tellurium oxide-based glasses: TeO2–BaO–TiO2. J Solid State Chem. 1997;132:411–9.

    Article  CAS  Google Scholar 

  9. Iordanova R, Dimitrov V, Klissurski D. Glass formation and structure of glasses in the V2O5–MoO3–Bi2O3 system. J Non-Cryst Solids. 1994;180:58–65.

    Article  CAS  Google Scholar 

  10. Klissurski D, Pesheva Y, Abadjeva N. Multicomponent oxide catalysts for the oxidation of methanol to formaldehyde. Appl Catal. 1991;77:55–66.

    Article  Google Scholar 

  11. Syam Prasad P, Raghavaiah BV, Balaji Rao R, Laxmikanth C, Veeraiah N. Dielectric dispersion in the PbO–MoO3–B2O3 glass system. Solid State Commun. 2004;132:235–40.

    Article  Google Scholar 

  12. Pal M, Hirota K, Sakata H. The dc electrical conductivity of semiconducting TeO2-V2O5-MoO3. J Phys D Appl Phys. 2001;34:459–64.

    Article  CAS  Google Scholar 

  13. El-Hofy M, Hager IZ. Ionic conductivity in MoO3-BaF2-AgI-LiF glasses. Phys Status Solidi A. 2000;182:697–707.

    Article  CAS  Google Scholar 

  14. Shah KV, Goswami M, Aswal DK, Shrikhande VK, Gupta SK, Kothiyal GP. Effect of Na2O/K2O substitution on thermophysical properties of PbO based phosphate glasses. J Therm Anal Calorim. 2007;89:153–7.

    Article  CAS  Google Scholar 

  15. Dahshan A, Aly KA, Dessouky MT. Thermal stability and activation energy of some compositions of Ge–Te–Cu chalcogenide system. Philos Mag. 2008;88:2399–410.

    Article  CAS  Google Scholar 

  16. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czechoslov J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

  17. Marotta A, Buri A, Branda F. Structure and devitrification behaviour of sodium, lithium and barium borophosphate glasses. J Non-Cryst Solids. 1987;95:593–9.

    Article  Google Scholar 

  18. Zhao X, Sakka S. Glass formation and crystallization in alkali-containing fluoride glasses. J Non-Cryst Solids. 1987;95:487–94.

    Article  Google Scholar 

  19. Borisova ZU. Glassy semiconductors. New York: Plenum; 1981. p. 231.

    Google Scholar 

  20. Sestak J. Heat as manufacturing power or the source of disorder? J Therm Anal. 2002;69:113–24.

    Article  CAS  Google Scholar 

  21. Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19:11–8.

    Article  Google Scholar 

  22. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Mining Metall Eng. 1932;135:416–42.

    Google Scholar 

  23. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on as-sb-se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  24. Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  25. Surinach S, Baro MD, Clavaguera-Mora MT, Clavaguera N. Glass formation and crystallization in the GeSe2-Sb2Te3 system. J Mater Sci. 1984;19:3005–12.

    Article  CAS  Google Scholar 

  26. Young D, Jiang Z. Relationship between regions of glass formation and pseudoeutectic regions. Phy Chem Glasses. 1990;31:161–5.

    Google Scholar 

  27. ICDD View 2006 Release. Cards No. 00-018-0755, 01-074-0054, 01-077-0295, 00-022-0421, 00-024-0668.

  28. Lide D. CRC handbook of chemistry and physics. 84th ed. Boca Raton: CRC Press; 2004. p. 9–52.

    Google Scholar 

  29. http://www.webelements.com.

  30. Shaaban ER, Shapaan M, Saddeek YB. Structural and thermal stability criteria of Bi2O3–B2O3 glasses. J Phys Condens Matter. 2008;20:155108–17.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Al-Azhar University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Aly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aly, K.A., Dahshan, A. & Saddeek, Y.B. Effect of MoO3 additions on the thermal stability and crystallization kinetics of PbO–Sb2O3–As2O3 glasses. J Therm Anal Calorim 100, 543–549 (2010). https://doi.org/10.1007/s10973-009-0018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0018-3

Keywords

Navigation