Skip to main content
Log in

Studying the toxic effect of cadmium and hexavalent chromium on microbial activity of a soil and pure microbe

A microcalorimetric method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Using TAM III multi-channel calorimetry combined with direct microorganism counting (bacteria, actinomycetes and fungi) under laboratory conditions, we determined the microbial population count, resistance and activity toward cadmium (Cd(II)) and hexavalent chromium (Cr(VI)) toxicity in soil. The thermokinetic parameters, which can represent soil microbial activity, were calculated from power-time curves of soil microbial activity obtained by microcalorimetric measurement. Simultaneous application of the two methods showed that growth rate constant (k), peak-heat output power (P max) and the number of living microorganisms decreased with increasing concentration of Cd and Cr. The accumulation of Cr on E. coli was conducted by HPLC-ICP-MS. Cr6+ accumulation by Escherichia coli was increased steadily with increasing Cr6+ concentration. The results revealed that the change in some thermo-kinetic parameters could have good corresponding relationship with metal accumulation. Our work also suggests that microcalorimetry is a fast, simple, more sensitive, on-line and in vitro method that can be easily performed to study the toxicity of different species of heavy metals on microorganism compared to other biological methods, and can combine with other analytic methods to study the interaction mechanism between environmental toxicants and microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO Sustainable Department, P. J. Anid and J. Tschirley, Eds, Environmental Monitoring, In China’s Hubei Province, 1998.

  2. D. A. Wardle and A. Ghani, Soil Biol. Biochem., 27 (1995) 821.

    Article  CAS  Google Scholar 

  3. B. P. Degens, L. A. Schipper, G. P. Sparling and M. Vojvodic-Vukovic, Soil Biol. Biochem., 32 (2000) 189.

    Article  CAS  Google Scholar 

  4. S. Aikio, H. Väre and R. Strömmer, Soil Biol. Biochem., 32 (2000) 1091.

    Article  CAS  Google Scholar 

  5. E. E. Cary, Biological and Environmental Aspects of Chromium, Topics in Environmental Health, S. Langard, Ed., Elsevier Biomedical Press, Amsterdam 1982, pp. 49–64.

    Google Scholar 

  6. A. Arillo and F. Melodia, Ecotox. Environ. Safe, 21 (1991) 92.

    Article  CAS  Google Scholar 

  7. F. C. Richard and A. C. M. Bourg, Water Res., 25 (1991) 807.

    Article  CAS  Google Scholar 

  8. S. D. Kim, K. S. Park and M. B. Gu, J. Hazard. Mater., 93 (2002) 155.

    CAS  Google Scholar 

  9. N. Barros, S. Feijoo’, J. A. Simoni, A. G. S. Prado, F. D. Barboza and C. Airoldi, Thermochim. Acta, 328 (1999) 99.

    Article  CAS  Google Scholar 

  10. H. Vandenhove, K. Coninck, K. Coorvits, R. Merckx and K. Vlassak, Toxicol. Environ. Chem., 30 (1991) 201.

    Article  CAS  Google Scholar 

  11. G. P. Sparling, J. Soil Sci., 34 (1983) 381.

    Article  CAS  Google Scholar 

  12. L. Nunez, N. Barros and I. Barja, Thermochim. Acta, 237 (1994) 73.

    Article  CAS  Google Scholar 

  13. S. A. M. Critter, S. S. Freitas and C. Airoldi, Thermochim. Acta, 417 (2004) 275.

    Article  CAS  Google Scholar 

  14. J. Yao, Y. Liu, H. Liang, P. Liu, M. Sun, S. S. Qu and Z. N. Yu, J. Therm. Anal. Cal., 79 (2005) 39.

    Article  CAS  Google Scholar 

  15. A. G. S. Prado and C. Airoldi, Thermochim. Acta, 371 (2001) 169.

    Article  CAS  Google Scholar 

  16. D. Kuehnelt, W. Goessler, C. Schlagenhaufen and K. J. Irgolic, Appl. Organomet. Chem., 11 (1997) 859.

    Article  CAS  Google Scholar 

  17. M. N. Hughes and R. K. Poole, Metals and Micro-organisms, Chapman and Hall Inc., New York 1989.

    Google Scholar 

  18. P. Nannipieri, Soil Biota, Management in Sustainable Farming Systems, C. E. Pankhurst, B. M. Doube, V. V. S. R. Gupta and P. R. Grace, Eds, CSIRO Publications, Australia 1994, pp. 238–244.

    Google Scholar 

  19. S. P. McGrath, Cadmium in soils and plant, M. J. McLaughlin and B. R. Singh, Eds, Kluwer Academic, The Netherlands 1999, pp. 199–218.

    Google Scholar 

  20. Y. E. Collins and G. Stotzky, Metal Ions and Bacteria, T. J. Beveridge and R. J. Doyle, Eds, Wiley, New York 1989, pp. 31–90.

    Google Scholar 

  21. J. Wang, S. Li and Z. Huang, Environmental Microbiology, High Education Press, Beijing 2003, p. 311.

    Google Scholar 

  22. J. Yao, Y. Liu, P. Liu, M. Sun, Z. Yu, Z. T. Gao, Y. Shen, S. S. Qu and Z. N. Yu, Biol. Trace Elem. Res., 92 (2003) 71.

    Article  CAS  Google Scholar 

  23. L. N. Yang, F. Xu, L. X. Sun, Z. B. Zhao and C. G. Song, J. Therm. Anal. Cal., 93 (2008) 417.

    Article  CAS  Google Scholar 

  24. K. Vig, M. Megharaj, N. Sethunathan and R. Naidu, Adv. Environ. Res., 8 (2003) 121.

    Article  CAS  Google Scholar 

  25. S. Zafar, F. Aqil and I. Ahmad, Bioresour. Technol., 98 (2007) 2557.

    Article  CAS  Google Scholar 

  26. Y. Hadef, J. Kaloustian, A. Nicolay and H. Portugal, J. Therm. Anal. Cal., 93 (2008) 553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Wang, F., Tian, L. et al. Studying the toxic effect of cadmium and hexavalent chromium on microbial activity of a soil and pure microbe. J Therm Anal Calorim 95, 517–524 (2009). https://doi.org/10.1007/s10973-008-9405-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9405-4

Keywords

Navigation