Skip to main content
Log in

Influences of evolved gases on the thermal decomposition of zinc carbonate hydroxide evaluated by controlled rate evolved gas analysis coupled With TG

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influences of atmospheric CO2 and H2O on the kinetics of the thermal decomposition of zinc carbonate hydroxide, Zn5(CO3)2(OH)6, were investigated by means of controlled rate evolved gas analysis (CREGA) coupled with TG. Although CO2 and H2O were evolved simultaneously in a single mass-loss step of the thermal decomposition, different effects of those evolved gases on the kinetic rate behavior were observed. No distinguished effect of atmospheric CO2 was detected within the possible range of self-generated CO2 concentration. On the other hand, apparent acceleration effect by the increase in the concentration of atmospheric H2O was observed as the reduction of reaction temperature during the course of constant rate thermal decomposition. The catalytic effect was characterized by the decrease in the apparent activation energy for the established reaction with increasing the concentration of atmospheric H2O, accompanied by the partially compensating decrease in the pre-exponential factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Koga and H. Tanaka, Thermochim. Acta, 388 (2002) 41.

    Article  CAS  Google Scholar 

  2. H. Tanaka and N. Koga, J. Thermal Anal., 36 (1990) 2601.

    Article  CAS  Google Scholar 

  3. N. Koga and J. M. Criado, Int. J. Chem. Kinet., 30 (1998) 737.

    Article  CAS  Google Scholar 

  4. J. Rouquerol, J. Thermal Anal., 2 (1970) 123.

    Article  CAS  Google Scholar 

  5. J. Paulik and F. Paulik, Anal. Chim. Acta, 56 (1971) 328.

    Article  CAS  Google Scholar 

  6. O. T. Sorensen and J. Rouquerol, Eds, Sample Controlled Thermal Analysis, Kluwer, Dordrecht 2003.

    Google Scholar 

  7. N. Koga, J. M. Criado and H. Tanaka, Thermochim. Acta, 340–341 (1999) 387.

    Article  Google Scholar 

  8. N. Koga, J. M. Criado and H. Tanaka, J. Therm. Anal. Cal., 60 (2000) 943.

    Article  CAS  Google Scholar 

  9. N. Koga and S. Yamada, Int. J. Chem. Kinet., 37 (2005) 346.

    Article  CAS  Google Scholar 

  10. N. Koga and H. Tanaka, J. Therm. Anal. Cal., 82 (2005) 725.

    Article  CAS  Google Scholar 

  11. N. Koga and Y. Yamane, J. Therm. Anal. Cal., 93 (2008) 963.

    Article  CAS  Google Scholar 

  12. S. Yamada and N. Koga, Thermochim. Acta, 431 (2005) 38.

    Article  CAS  Google Scholar 

  13. J. M. Criado, L. A. Perez-Maqueda, M. J. Dianez and P. E. Sanchez-Jimenez, J. Therm. Anal. Cal., 87 (2007) 297.

    Article  CAS  Google Scholar 

  14. B. Topley and M. L. Smith, J. Chem. Soc., (1935) 321.

  15. D. A. Young, Decomposition of Solids, Pergamon, Oxford 1966.

    Google Scholar 

  16. M. E. Brown, D. Dollimore and A. K. Galwey, Reactions in the Solid State, Elsevier, Amsterdam 1980.

    Google Scholar 

  17. A. K. Galwey and M. E. Brown, Thermal Decomposition of Ionic Solids, Elsevier, Amsterdam 1999.

    Google Scholar 

  18. M. Reading, D. Dollimore, J. Rouquerol and F. Rouquerol, J. Thermal Anal., 29 (1984) 775.

    Article  CAS  Google Scholar 

  19. T. Ozawa, J. Thermal Anal., 31 (1986) 547.

    Article  CAS  Google Scholar 

  20. N. Koga, Thermochim. Acta, 258 (1995) 145.

    Article  CAS  Google Scholar 

  21. T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.

    Article  CAS  Google Scholar 

  22. T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  CAS  Google Scholar 

  23. T. Ozawa, Thermochim. Acta, 100 (1986) 109.

    Article  CAS  Google Scholar 

  24. F. J. Gotor, J. M. Criado, J. Malek and N. Koga, J. Phys. Chem. A, 104 (2000) 10777.

    Article  CAS  Google Scholar 

  25. J. M. Criado, L. A. Perez-Maqueda, F. J. Gotor, J. Malek and N. Koga, J. Therm. Anal. Cal., 72 (2003) 901.

    Article  CAS  Google Scholar 

  26. D. M. Bates and D. G. Watts, Nonlinear Regression and its Applications, Wiley, New York 1988.

    Book  Google Scholar 

  27. N. Koga, A. Mako, T. Kimizu and Y. Tanaka, Thermochim. Acta, 467 (2008) 11.

    Article  CAS  Google Scholar 

  28. N. Koga, Thermochim. Acta, 244 (1994) 1.

    Article  CAS  Google Scholar 

  29. A. K. Galwey and M. Mortimer, Int. J. Chem. Kinet., 38 (2006) 464.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, S., Tsukumo, E. & Koga, N. Influences of evolved gases on the thermal decomposition of zinc carbonate hydroxide evaluated by controlled rate evolved gas analysis coupled With TG. J Therm Anal Calorim 95, 489–493 (2009). https://doi.org/10.1007/s10973-008-9272-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9272-z

Keywords

Navigation