Skip to main content
Log in

Effect of atmosphericwater vapor on the kinetics of thermal decomposition of copper(II) carbonate hydroxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of atmospheric water vapor on the kinetic rate behavior of the thermal decomposition of copper(II) carbonate hydroxide, Cu2CO3(OH)2, was investigated by means of TG-DTA coupled with a programmable humidity controller. With increasing water vapor pressure p(H2O) from 0.8 to 10.6 kPa, a systematic reduction of the reaction temperature of the thermal decomposition was observed as the continuous trend from the previous works at the lower p(H2O). Through a comparative kinetic analysis of the reaction at different p(H2O), a catalytic action of the atmospheric water vapor on the nucleation process at the first half of the reaction was identified as the possible origin of the reduction of the reaction temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Koga and H. Tanaka, Kagaku-to-Kyoiku, 54 (2006) 102, in Japanese.

    CAS  Google Scholar 

  2. P. Ramamurthy and E. A. Secco, Can. J. Chem., 48 (1970) 3510.

    Article  CAS  Google Scholar 

  3. J. Morgan, J. Thermal Anal., 12 (1977) 245.

    Article  CAS  Google Scholar 

  4. Z. D. Zivkovic, D. F. Bogosavljevic and V. D. Zlatkovic, Thermochim. Acta, 18 (1977) 235, 310.

    Article  CAS  Google Scholar 

  5. D. Dollimore and T. J. Taylor, Thermochim. Acta, 40 (1980) 297; Proc. 7th ICTA, Ontario 1982, p. 636.

    Article  CAS  Google Scholar 

  6. I. W. M. Brown, K. J. D. Mackenzie and G. J. Gainsford, Thermochim. Acta, 74 (1984) 23.

    Article  Google Scholar 

  7. I. M. Uznov and D. G. Klissurski, Thermochim. Acta, 81 (1984) 353.

    Article  Google Scholar 

  8. H. Tanaka and Y. Yamane, J. Thermal Anal., 38 (1992) 627.

    Article  CAS  Google Scholar 

  9. M. Reading and D. Dollimore, Thermochim. Acta, 240 (1994) 117.

    Article  CAS  Google Scholar 

  10. N. Koga, Thermochim. Acta, 258 (1995) 145.

    Article  CAS  Google Scholar 

  11. N. Koga, J. M. Criado and H. Tanaka, Thermochim. Acta, 340/341 (1999) 387.

    Article  Google Scholar 

  12. N. Koga, J. M. Criado and H. Tanaka, J. Therm. Anal. Cal., 60 (2000) 943.

    Article  CAS  Google Scholar 

  13. N. Koga and S. Yamada, Int. J. Chem. Kinet., 37 (2005) 346.

    Article  CAS  Google Scholar 

  14. N. Koga and H. Tanaka, J. Therm. Anal. Cal., 82 (2005) 725.

    Article  CAS  Google Scholar 

  15. H. L. Friedman, J. Polym. Sci. Part C, 6 (1964) 183.

    Google Scholar 

  16. F. J. Gotor, J. M. Criado, J. Malek and N. Koga, J. Phys. Chem. A, 104 (2000) 10777.

    Article  CAS  Google Scholar 

  17. J. M. Criado, L. A. Perez-Maqueda, F. J. Gotor, J. Malek and N. Koga, J. Therm. Anal. Cal., 72 (2003) 901.

    Article  CAS  Google Scholar 

  18. T. Ozawa, J. Thermal Anal., 31 (1986) 547.

    Article  CAS  Google Scholar 

  19. N. Koga, Thermochim. Acta, 258 (1995) 145.

    Article  CAS  Google Scholar 

  20. T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.

    Article  CAS  Google Scholar 

  21. T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  CAS  Google Scholar 

  22. T. Ozawa, Thermochim. Acta, 100 (1986) 109.

    Article  CAS  Google Scholar 

  23. N. Koga and H. Tanaka, Thermochim. Acta, 388 (2002) 41.

    Article  CAS  Google Scholar 

  24. J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.

    Article  Google Scholar 

  25. D. M. Bates and D. G. Watts, Nonlinear Regression and its Applications, Wiley, New York 1988.

    Book  Google Scholar 

  26. N. Koga, A. Mako, T. Kimizu and Y. Tanaka, Thermochim. Acta, 467 (2008) 11.

    Article  CAS  Google Scholar 

  27. L. A. Perez-Maqueda, J.M. Criado and P. E. Sanchez-Jimenez, J. Phys. Chem. A, 110 (2006) 12456.

    Article  CAS  Google Scholar 

  28. J. Šesták, J. Thermal Anal., 33 (1988) 1263.

    Article  Google Scholar 

  29. R. Ozao and M. Ochiai, J. Ceram. Soc. Jpn., 101 (1993) 263.

    CAS  Google Scholar 

  30. N. Koga and H. Tanaka, J. Thermal Anal., 41 (1994) 455.

    Article  CAS  Google Scholar 

  31. N. Koga and J. Malek, Thermochim. Acta, 282/283 (1996) 69.

    Article  CAS  Google Scholar 

  32. N. Koga, Thermochim. Acta, 244 (1994) 1.

    Article  CAS  Google Scholar 

  33. A. K. Galwey and M. Mortimer, Int. J. Chem. Kinet., 38 (2006) 464.

    Article  CAS  Google Scholar 

  34. P. Budrugeac, V. Musat and E. Segal, J. Therm. Anal. Cal., 88 (2007) 699.

    Article  CAS  Google Scholar 

  35. J. M. Criado, P. E. Sanchez-Jimenez and L. A. Perez-Maqueda, J. Therm. Anal. Cal., 92 (2008) 199.

    Article  CAS  Google Scholar 

  36. W. E. Garner, Chemistry of Solid-state, Butterworths, London 1955, Chap. 8.

  37. M. E. Brown, D. Dollimore and A. K. Galwey, Reactions in the Solid State, Elsevier, Amsterdam 1980, Chap. 4.

    Google Scholar 

  38. A. K. Galwey and M. E. Brown, Thermal Decomposition of Ionic Solids, Elsevier, Amsterdam 1999, Chap. 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, N., Tatsuoka, T. & Tanaka, Y. Effect of atmosphericwater vapor on the kinetics of thermal decomposition of copper(II) carbonate hydroxide. J Therm Anal Calorim 95, 483–487 (2009). https://doi.org/10.1007/s10973-008-9271-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9271-0

Keywords

Navigation