Skip to main content
Log in

Structural property and function of D-erythro asymmetric chain sphingomyelins as studied by microcalorimetry and electron microscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

D-erythro sphingomyelines (SM) having a defined acyl chain were synthesized with sphingosylphosphorylcholine as a starting material, and both a structural property and its relating phase transition phenomenon were compared between a symmetric chain length SM (palmitoyl-SM: C16-SM) and asymmetric chain length SMs (behenoyl-SM: C22-SM, lignoceryl-SM: C24-SM). Furthermore, effect of increasing a content of asymmetric chain SMs in the mixture systems of C22-SM/C16-SM, and C24-SM/C16-SM was investigated.

The present calorimetric and electron microscopic studies revealed that (1) The main transition enthalpy is smaller for the asymmetric chain SMs than for the symmetric chain SM by about 3 kJ mol−1, although the acyl chain length is longer for the former than for latter; (2) Relatively small size vesicles (100∼200 nm diameters) surrounded by one or more lamellae are observed for the asymmetric chain SMs, in contrast to large multilamellar vesicles (1500∼2500 nm diameters) having at least fifteen stained lamellae for the symmetric chain SM and (3) The coexisting asymmetric chain SMs cause the decrease in size and multiplicity for the MLV of the symmetric chain SM, simultaneously with a decrease in the main transition enthalpy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Simons and E. Ikonen, Nature, 387 (1997) 569.

    Article  CAS  Google Scholar 

  2. A. Rietveld and K. Simons, Biochim. Biophys. Acta, 1376 (1998) 467.

    CAS  Google Scholar 

  3. A. Prinetti, V. Chigorno, G. Tettamanti and S. Sonnino, J. Biol. Chem., 275 (2000) 11658.

    Article  CAS  Google Scholar 

  4. U. Ortegren, M. Karlsson, N. Blazic, M. Blomqvist, F. H. Nystrom, J. Gustavsson, P. Fredman and P. Stralfors, Eur. J. Biochem., 271 (2004) 2028.

    Article  CAS  Google Scholar 

  5. S. H. Untracht and G. G. Shipley, J. Biol. Chem., 252 (1977) 4449.

    CAS  Google Scholar 

  6. R. Cohen, Y. Barenholz, S. Gatt and A. Dagan, Chem. Physic. Lipids, 35 (1984) 371.

    Article  CAS  Google Scholar 

  7. T. J. McIntosh, S. A. Simon, D. Needham and C. Huang, Biochemistry, 31 (1992) 2012.

    Article  CAS  Google Scholar 

  8. P. R. Maulik and G. G. Shipley, Biophys. J., 69 (1995) 1909.

    CAS  Google Scholar 

  9. L. K. Bar, Y. Barenholz and T. E. Thompson, Biochemistry, 36 (1997) 2507.

    Article  CAS  Google Scholar 

  10. P. K. Sripada, P. R. Maulik, J. A. Hamilton and G. G. Shipley, J. Lipids Res., 28 (1987) 710.

    CAS  Google Scholar 

  11. B. Ramstedt and J. P. Slotte, Biophys. J., 76 (1999) 908.

    CAS  Google Scholar 

  12. A. D. Bangham, M. W. Hill and N. G. A. Miller, Methods Membr. Biol., 1 (1974) 1.

    CAS  Google Scholar 

  13. G. V. Marinetti, J. Lipid Res., 3 (1962) 1.

    CAS  Google Scholar 

  14. M. Kodama, T. Miyata and Y. Takaichi, Biochim. Biophys. Acta, 1169 (1993) 90.

    CAS  Google Scholar 

  15. M. Kodama, H. Aoki and T. Miyata, Biophys. Chem., 79 (1999) 205.

    Article  CAS  Google Scholar 

  16. M. Kodama and H. Aoki, Surfactant Science Series 93, Thermal Behavior of Dispersed Systems, N. Garti, Ed., Marcel Dekker, New York 2000, p. 247.

    Google Scholar 

  17. M. Kodama, H. Hashigami and S. Seki, J. Colloid Interface Sci., 117 (1986) 497.

    Article  Google Scholar 

  18. M. Kodama, H. Kato and H. Aoki, Thermochim. Acta, 352–353 (2000) 213.

    Article  Google Scholar 

  19. Li, Xin-Min, J. M. Smaby, M. M. Momsen, H. L. Brockman and R. E. Brown, Biophys. J., 78 (2000) 1921.

    Article  CAS  Google Scholar 

  20. K. S. Bruzik, J. Chem. Soc. Perkin Trans., 1 (1988) 423.

    Article  Google Scholar 

  21. Y. Fujino and T. Negishi, Biochim. Biophys. Acta, 152 (1968) 428.

    CAS  Google Scholar 

  22. B. Ramstedt and J. P. Slotte, Biophys. J., 77 (1999) 1498.

    CAS  Google Scholar 

  23. Y. Kawasaki, H. Nishikido, A. Kuboki, S. Ohira and M. Kodama, Thermochim. Acta, 431 (2005) 188.

    Article  CAS  Google Scholar 

  24. L.W. Levin, T. E. Thompson, Y. Barenholz and C. Huang, Biochemistry, 24 (1985) 6282.

    Article  CAS  Google Scholar 

  25. C. Huang and J. T. Mason, Proc. Natl. Acad. Sci. USA, 75 (1978) 308.

    Article  CAS  Google Scholar 

  26. Klotho: Biochemical Compounds Declarative Database, http://www.biocheminfo.org/klotho

  27. C. Huang and J. T. Mason, Biochem. Biophys. Acta, 864 (1986) 423.

    CAS  Google Scholar 

  28. J. T. Mason, C. Huang and R. L. Biltonen, Biochemistry, 20 (1981) 6086.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kodama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, H., Kosakabe, S., Inumaru, M. et al. Structural property and function of D-erythro asymmetric chain sphingomyelins as studied by microcalorimetry and electron microscopy. J Therm Anal Calorim 92, 443–449 (2008). https://doi.org/10.1007/s10973-007-8968-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8968-9

Keywords

Navigation