Skip to main content
Log in

Thermal properties of aliphatic nylons and their link to crystal structure and molecular motion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The phase behavior of semicrystalline, aliphatic nylons is analyzed on the basis of differential scanning calorimetry, DSC, and quasi-isothermal, temperature-modulated DSC, TMDSC. The data of main interest are the apparent heat capacities, C p, in the temperature range from below the glass transitions to above the isotropization. Based on the contributions of the vibrational motion to C p, as is available from measurements in our laboratory, the ATHAS Data Bank, and multifaceted new TMDSC results, as well as on information on the crystal structures, NMR, molecular dynamics simulation of paraffin crystals, and quasi-elastic neutron scattering, the following observations are made: (a) In semicrystalline nylons the glass transition of the mobile-amorphous phase is broadened to higher temperature. The additionally present rigid-amorphous phase, RAF, undergoes a separate, broad glass transition at somewhat higher temperature. (b) The transition of the RAF, in turn, overlaps usually with an increase in large-amplitude motion of the CH2-groups within the crystals and latent heat effects due to melting, recrystallization, and crystal annealing. (c) Above the glass transitions of the two non-crystalline phases, C p of the crystals approaches and exceeds that of the melt. This effect is due to additional entropy contributions (disordering) within the crystals, which may for some nylons lead to a mesophase. In case a mesophase is formed, the C p drops to the level of the melt as is common for mesophases. (d) Some locally reversible melting is present on the crystal surfaces, but seems to be minimal for the mesophase. (e) The increasing amount of large-amplitude motion in the crystals is described as a third glass transition, occurring over a broad temperature range below the melting or disordering transition from crystal to mesophase.

The assumption of a separate glass transition in ordered phases was previously discovered on analyzing aliphatic poly(oxide)s such as poly(oxyethylene), POE, and in the broad class of mesophase-forming small and large molecules. To attain a full description of the globally-metastable, semicrystalline phase-structure of nylons and to understand its properties, one needs quantitative information about the glass transitions of the two non-crystalline phases and that of the crystal, as well as the various irreversible and locally reversible order/disorder transitions and their kinetics. Finally, with different substitutions in the α-position of the backbone structure of nylon 2, one describes poly(amino acid)s which on proper copolymerization yield proteins. This links the present study to the earlier thermal analyses of all naturally occurring poly(amino acid)s, a number of copoly(amino acid)s, and globular proteins in their dehydrated states. It will be of importance to check by quantitative thermal analysis if similar glass transitions and phase structures as seen in the aliphatic nylons are also present in the poly(amino acid)s to possibly gain new information about the nanophase structure of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Kohan (Ed.), Nylon Plastics Handbook, Hanser Gardener: Cincinnati, 1995; see in particular: Chapter 5 on Physical Structure by A. Xenopoulos and E. Clark, pp. 107–138 and Chapter 6 on Transitions and Relaxations by H. W. Starkweather, Jr., 139–150.

  2. H. Mark and G. E. Whitby, Collected Papers of Wallace H. Carothers on Polymerization. Interscience, New York 1940.

    Google Scholar 

  3. B. Wunderlich, Thermal Analysis of Polymeric Materials, Springer-Verlag, Berlin 2005.

    Google Scholar 

  4. W. P. Slichter, J. Polym. Sci., 35 (1958) 77.

    Article  Google Scholar 

  5. J. Hirschinger, H. Miura, K. H. Gardner and A. D. English, Macromolecules, 23 (1990) 2153.

    Article  CAS  Google Scholar 

  6. H. Miura, J. Hirschinger and A. D. English, Macromolecules, 23 (1990) 2169.

    Article  CAS  Google Scholar 

  7. J. Wendoloski, K. H. Gardner, J. Hirschinger, H. Miura and A. D. English, Science, 247 (1990) 431.

    Article  CAS  Google Scholar 

  8. A. Xenopoulos, B. Wunderlich and A. H. Narten, Macromolecules, 26 (1993) 1576.

    Article  CAS  Google Scholar 

  9. R. Brill, J. Prakt. Chem., 161 (1942) 49.

    Article  CAS  Google Scholar 

  10. D. Garcia and H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 23 (1985) 537.

    Article  CAS  Google Scholar 

  11. H. W. Starkweather, Jr., P. Zoller, G. A. Jones and A. Glover, J. Polym. Sci., Polym. Phys. Ed., 22 (1984) 1615.

    Article  CAS  Google Scholar 

  12. H. W. Starkweather, Jr., G. A. Jones and A. Glover, J. Polym. Sci., Polym. Phys. Ed., 19 (1981) 467.

    Article  CAS  Google Scholar 

  13. H. W. Starkweather, Jr., and J. R. Barkley, Polym. Phys. Ed., 19 (1981) 1211.

    Article  CAS  Google Scholar 

  14. H. W. Starkweather, Jr., J. F. Whitney and D. R. Johnson, J. Polym. Sci., Pt. A, 1 (1963) 715.

    Article  Google Scholar 

  15. H. W. Starkweather, Jr. and R. E. Moynihan, J. Polym. Sci., 22 (1956) 363.

    Article  CAS  Google Scholar 

  16. H. W. Starkweather, Jr., G. E. Moore, J. E. Hansen, T. M. Roder and R. E. Brooks, J. Polym. Sci., 21 (1956) 1892.

    Article  Google Scholar 

  17. H. W. Starkweather, Jr. and R. E. Brooks, J. Appl. Polym. Sci., 1 (1959) 236.

    Article  CAS  Google Scholar 

  18. H. W. Starkweather, Jr., J. Appl. Polym. Sci., 2 (1959) 129.

    Article  CAS  Google Scholar 

  19. W. Qiu, A. Habenschuss and B. Wunderlich, Polymer, 48 (2007) 1641.

    Article  CAS  Google Scholar 

  20. H. Haberkorn, K.-H. Illers and O. Simak, Colloid Polym. Sci., 257 (1979) 820.

    Article  CAS  Google Scholar 

  21. J. H. Magill, M. Girolamo and A. Keller, Polymer, 22 (1981) 43.

    Article  Google Scholar 

  22. A. Xenopoulos, ’Thermal Analysis and Studies of Conformational Disorder in Aliphatic Polyamides.’ Thesis, Rensselaer Polytechnic Institute, Chemistry, Troy, NY 1990.

    Google Scholar 

  23. F. N. Liberti and B. Wunderlich, J. Polym. Sci., Part A-2, 6 (1968) 833.

    Article  CAS  Google Scholar 

  24. P. Weigel, A. Hirte and C. Ruscher, Faserforsch. Textiltechnik, 25 (1974) 129.

    Google Scholar 

  25. K. H. Illers, Prog. Colloid Polymer Sci., 58 (1975) 61.

    Article  Google Scholar 

  26. M. Todoki and T. Kawaguchi, J. Polym. Sci., Polym. Phys. Ed., 15 (1977) 1068, 1507.

    Google Scholar 

  27. H. Suzuki, J. Grebowicz and B. Wunderlich, Br. Polym. J., 17 (1985) 1.

    Article  CAS  Google Scholar 

  28. W. Qiu, M. Pyda, E. Nowak-Pyda, A. Habenschuss and B. Wunderlich, Macromolecules, 38 (2005) 8454.

    Article  CAS  Google Scholar 

  29. W. Qiu and B. Wunderlich, Thermochim. Acta, 448 (2006) 136.

    Article  CAS  Google Scholar 

  30. A. Xenopoulos and B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 28 (1990) 2271.

    Article  CAS  Google Scholar 

  31. U. Gaur, S.-F. Lau, B. B. Wunderlich and B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1983) 65. Extended by new measurements in [30]. See also, B. Wunderlich, ‘The Athas Data Base on Heat Capacities of Polymers.’ Pure Applied Chem., 67 (1995) 1019. For a collection of the updated critically analyzed data, see the ATHAS website: http://athas.prz.rzeszow.pl

    Article  CAS  Google Scholar 

  32. A. Xenopoulos and B. Wunderlich, Polymer, 31 (1990) 1260.

    Article  CAS  Google Scholar 

  33. B. G. Sumpter, D. W. Noid, G. L. Liang and B. Wunderlich, in U. Suter and L. Monnerie, Eds, Atomistic Modeling of Physical Properties of Polymers. pp. 27–72, Springer, Berlin 1994 (Adv. Polymer Sci., Vol. 116).

    Chapter  Google Scholar 

  34. P. Debye, Ann. Phys., 37 (1912) 789.

    Article  Google Scholar 

  35. V. V. Tarasov, Zh. Fiz. Khim., 24 (1950) 111.

    CAS  Google Scholar 

  36. B. Wunderlich and H. Baur, Heat Capacities of Linear High Polymers (transl. into Russian by Yu. Godovsky, Publishing House ‘Mir’, Moscow, 1972, p. 240.) Fortschr. Hochpolymeren Forsch. (Adv. Polymer Sci.), 7 (1970) 151.

    Article  CAS  Google Scholar 

  37. K. A. Roles, A. Xenopoulos and B. Wunderlich, Biopolymers, 31 (1991) 477.

    Article  CAS  Google Scholar 

  38. K. A. Roles and B. Wunderlich, Biopolymers, 33 (1993) 279.

    Article  Google Scholar 

  39. G. Zhang, S. Gerdes and B. Wunderlich, Macromol. Chem. Phys., 197 (1996) 3791.

    Article  CAS  Google Scholar 

  40. G. Zhang and B. Wunderlich, Proc. 25th NATAS Conf. in McLean, Va., Sept. 7–9, R. J. Morgan and R.G. Morgan, Eds, 25 (1997) 540.

  41. B. Wunderlich, Thermochim. Acta, 446 (2006) 128.

    Article  CAS  Google Scholar 

  42. B. Wunderlich, J. Appl. Polym. Sci., 105 (2007) 49.

    Article  CAS  Google Scholar 

  43. M. Reading and D. J. Hourston, Eds, Modulated Temperature Differential Scanning Calorimetry, Springer, Dordrecht, The Netherlands 2006.

    Google Scholar 

  44. B. Wunderlich, Prog. Polym. Sci., 28 (2003) 383.

    Article  CAS  Google Scholar 

  45. A. Xenopoulos and B. Wunderlich, Coll. Polym. Sci., 269 (1991) 375.

    Article  CAS  Google Scholar 

  46. A. I. Kitaigorodskii, Organicheskaya Kristallokhimiya, Press of the Acad. Sci. USSR, Moscow 1955. Revised, English Translation by Consultants Bureau, New York 1961.

    Google Scholar 

  47. Y. Jin and B. Wunderlich, J. Phys. Chem., 95 (1991) 9000.

    Article  CAS  Google Scholar 

  48. M. N. Sanjeeva, J. Polym. Sci., Part B: Polymer Phys., 44 (2006) 1763.

    Article  CAS  Google Scholar 

  49. B. Wunderlich, Macromoleculer Physics, Vol. 3, Crystal Melting, Academic Press, New York 1980 (Section 10.3.2).

    Google Scholar 

  50. C. Ramesh, A. Keller and S. J. E. A. Eltink, Polymer, 35 (1994) 2483.

    Article  CAS  Google Scholar 

  51. S. J. Cooper, M. Coogan, N. Everall and I. Priestnall, Polymer, 42 (2001) 10119.

  52. W. Li, Y. Huang, G. Zhang and D. Yan, Polym. Int., 52 (2003) 1905.

    Article  CAS  Google Scholar 

  53. H. J. Biangardi, J. Macromol. Sci., Phys., B29 (1990) 139.

    CAS  Google Scholar 

  54. Y. Yoshioka and T. Kohji, Polymer, 44 (2003) 6407.

    Article  CAS  Google Scholar 

  55. T. Kohji, Chinese J. Polym. Sci., 25 (2007) 73.

    Article  Google Scholar 

  56. Y. Yoshioka and T. Kohji, Polymer, 44 (2003) 7007.

    Article  CAS  Google Scholar 

  57. Y. Yoshioka and T. Kohji, Polymer, 44 (2003) 6349.

    Google Scholar 

  58. T. Kohji and Y. Yoshioka, Polymer, 45 (2004) 4337.

    Article  CAS  Google Scholar 

  59. B. Wunderlich, J. Thermal Anal., 49 (1997) 513.

    Article  CAS  Google Scholar 

  60. W. Chen and B. Wunderlich, Macromol. Chem. Phys., 200 (1999) 283.

    Article  CAS  Google Scholar 

  61. B. Wunderlich, Thermochim. Acta, 403 (2003) 1.

    Article  CAS  Google Scholar 

  62. B. Wunderlich, Macromol. Rapid Commun., 26 (2005) 1521.

    Article  CAS  Google Scholar 

  63. B. Wunderlich, Int. J. Thermophys. Fluid Phase Equilib., 89 (2007) 321.

    CAS  Google Scholar 

  64. J. Pak and B. Wunderlich, Thermochim. Acta, 421 (2004) 203.

    Article  CAS  Google Scholar 

  65. Y. K. Kwon, A. Boller, M. Pyda and B. Wunderlich, Polymer, 41 (2000) 6237.

    Article  CAS  Google Scholar 

  66. M. Pyda, J. Polymer Sci., Part B: Polym. Phys., 39 (2001) 3038.

    Article  CAS  Google Scholar 

  67. M. Pyda, Macromolecules, 35 (2002) 4009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wunderlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderlich, B. Thermal properties of aliphatic nylons and their link to crystal structure and molecular motion. J Therm Anal Calorim 93, 7–17 (2008). https://doi.org/10.1007/s10973-007-8644-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8644-0

Keywords

Navigation