Skip to main content
Log in

Effect of mechanical grinding on the reaction pathway and kinetics of the thermal decomposition of hydromagnesite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Effect of mechanical grinding of hydromagnesite on the reaction pathway and kinetic behaviors of the thermal decomposition process was investigated by means of thermoanalytical techniques, together with crystallographic and morphological measurements. A crystalline hydromagnesite, the as-received sample, was decomposed in two distinguished mass loss steps of overlapped dehydration-dehydroxylation and dehydroxylation-decarbonation via an amorphous intermediate of carbonate compound. Thermal decomposition of an amorphous hydromagnesite, obtained by mechanical grinding of the as-received sample, was characterized by three well-separated decomposition processes of dehydration, dehydroxylation and decarbonation. The kinetic behaviors of the respective decomposition steps were estimated separately using a mathematical deconvolution of the partially overlapped reaction steps. From the formal kinetic analyses of the respective reaction processes, it was revealed that the dehydration and dehydroxylation processes indicate the decelerate rate behaviors controlled by diffusion, while the rate behavior of nucleation limited type is predominant for the decarbonation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sawada, K. Uematsu, N. Mizutani and M. Kato, J. Inorg. Nucl. Chem., 40 (1978) 979.

    Article  CAS  Google Scholar 

  2. Y. Sawada, K. Uematsu, N. Mizutani and M. Kato, Thermochim. Acta, 27 (1978) 45.

    Article  CAS  Google Scholar 

  3. Y. Sawada, J. Yamaguchi, O. Sakurai, K. Uematsu, N. Mizutani and M. Kato, Thermochim. Acta, 32 (1979) 277.

    Article  CAS  Google Scholar 

  4. Y. Sawada, J. Yamaguchi, O. Sakurai, K. Uematsu, N. Mizutani and M. Kato, Thermochim. Acta, 33 (1979) 127.

    Article  CAS  Google Scholar 

  5. Y. Sawada, J. Yamaguchi, O. Sakurai, K. Uematsu, N. Mizutani and M. Kato, Thermochim. Acta, 34 (1979) 233.

    Article  CAS  Google Scholar 

  6. C. Padeste, H. R. Oswald and A. Reller, Mater. Res. Bull., 26 (1991) 1263.

    Article  CAS  Google Scholar 

  7. G. Helou and S. A. Tariq, Thermochim. Acta, 228 (1993) 123.

    Article  CAS  Google Scholar 

  8. V. R. Choudhary, S. G. Pataskar, V. G. Gunjikar and G. B. Zope, Thermochim. Acta, 232 (1994) 95.

    Article  CAS  Google Scholar 

  9. T. R. Rao and V. S. Chohan, Chem. Eng. Technol., 18 (1995) 359.

    Article  CAS  Google Scholar 

  10. N. Khan, D. Dollimore, K. Alexander and F. W. Wilburn, Thermochim. Acta, 367/368 (2001) 321.

    Article  Google Scholar 

  11. Y. Sawada, Mater. Integr., 12 (1999) 65, in Japanese.

    CAS  Google Scholar 

  12. S. A. Morozov, A. A. Malkov and A. A. Matygin, Russ. J. Gen. Chem., 73 (2003) 41.

    Google Scholar 

  13. S. A. Morozov, A. A. Malkov and A. A. Matygin, Russ. J. Gen. Chem., 76 (2003) 7.

    CAS  Google Scholar 

  14. Q. Li, Y. Ding, G. Yu, C. Li, F. Li and Y. Qian, Solid State Commun., 125 (2003) 117.

    Article  CAS  Google Scholar 

  15. J. Y. Kim, H. S. Jung and K. S. Hong, J. Am. Ceram. Soc., 88 (2005) 784.

    Article  CAS  Google Scholar 

  16. M. Senna, J. Therm. Anal. Cal., 90 (2007) 107.

    Article  CAS  Google Scholar 

  17. O. T. Sorensen and J. Rouquerol, Eds, Sample Controlled Thermal Analysis. Kluwer, Dordrecht 2003.

    Google Scholar 

  18. N. Koga, J. M. Criado and H. Tanaka, J. Therm. Anal. Cal., 60 (2000) 943.

    Article  CAS  Google Scholar 

  19. JCPDS 25-0513.

  20. A. Botha and C. A. Strydom, J. Therm. Anal. Cal., 71 (2003) 987.

    Article  CAS  Google Scholar 

  21. J. Lanas and J. I. Alvarez, Thermochim. Acta, 421 (2004) 123.

    Article  CAS  Google Scholar 

  22. Y. Waseda and A. Muramatsu, Eds, Morphology Control of Materials and Nanoparticles, Springer, 2004.

  23. JCPDS 08-0479.

  24. JCPDS 31-0804.

  25. JCPDS 45-0946.

  26. H. L. Friedman, J. Polym. Sci. C, 6 (1964) 183.

    Google Scholar 

  27. T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.

    Article  CAS  Google Scholar 

  28. T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  CAS  Google Scholar 

  29. T. Ozawa, Thermochim. Acta, 100 (1986) 109.

    Article  CAS  Google Scholar 

  30. T. Ozawa, J. Thermal Anal., 31 (1986) 547.

    Article  CAS  Google Scholar 

  31. N. Koga, Thermochim. Acta, 258 (1995) 145.

    Article  CAS  Google Scholar 

  32. F. J. Gotor, J. M. Criado, J. Malek and N. Koga, J. Phys. Chem. A, 104 (2000) 10777.

    Article  CAS  Google Scholar 

  33. J.M. Criado, L. A. Perez-Maqueda, F. J. Gotor, J. Malek and N. Koga, J. Therm. Anal. Cal., 72 (2003) 901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Koga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, N., Yamane, Y. Effect of mechanical grinding on the reaction pathway and kinetics of the thermal decomposition of hydromagnesite. J Therm Anal Calorim 93, 963–971 (2008). https://doi.org/10.1007/s10973-007-8616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8616-4

Keywords

Navigation