Skip to main content
Log in

Structure of starches extracted from near-isogenic wheat lines

Part 2. Molecular organization of amylopectin clusters

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

High-sensitivity differential scanning calorimetry (HSDSC) and small-angle X-ray scattering (SAXS) were used to investigate the structural characteristics of starch granules with different amylose content extracted from near-isogenic wheat lines with different combinations of active granule-bound starch synthase (GBSS I) isoforms. Paracrystalline diffraction model, ‘two-state’ model of starch melting and other physico-chemical approaches were used to estimate the sizes of amylopectin clusters, the thicknesses of crystalline lamellae and the structure of amylopectin defects for investigated wheat starches.

The joint analysis of SAXS and DSC data has shown that the size of amylopectin cluster, the thickness of crystalline lamellae and the structure of amylopectin defects do not depend on the differences in combinations of active GBSS I isozymes. The data obtained supposed that the amylopectin cluster size and the thickness of crystalline lamellae are, generally, the universal structural parameters for wheat starches. Additionally, the data obtained suggest that increase of amylose content is accompanied by accumulation of both amylose tie-chains, located as defects in crystalline lamellae, and amylose chains oriented transversely to the lamella stack within amorphous lamellae. Disordered ends of amylopectin double helices and/or pre-existing double helices not participating in formation of crystals are considered as amylopectin defects arranged in crystalline lamellae. The relationship between structure of wheat starches extracted from near-isogenic lines and their thermodynamic properties was recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VA Bershtein VM Egorov et al. (1994) Differential Scanning Calorimetry of Polymers: Physics, Chemistry, Analysis, Technology Ellis Horwood New York 145

    Google Scholar 

  2. VP Yuryev AV Krivandin VI Kiseleva LA Wasserman NK Genkina J Fornal W Błaszczak A Schiraldi (2004) Carbohydr. Res. 339 2683 Occurrence Handle10.1016/j.carres.2004.09.005 Occurrence Handle1:CAS:528:DC%2BD2cXpt1Wgurk%3D

    Article  CAS  Google Scholar 

  3. JP Robin C Mercier R Charbonniere A Guilbot (1974) Cereal Chem. 51 389 Occurrence Handle1:CAS:528:DyaE2cXkvFSjs7Y%3D

    CAS  Google Scholar 

  4. DJ Manners (1989) Carbohydr. Polym. 11 87 Occurrence Handle10.1016/0144-8617(89)90018-0 Occurrence Handle1:CAS:528:DyaL1MXlsFChsbw%3D

    Article  CAS  Google Scholar 

  5. YuI Matveev N Elankin EN Kalistratova AN Danilenko C Niemann VP Yuryev (1998) Starch/Stärke 50 141 Occurrence Handle10.1002/(SICI)1521-379X(199804)50:4<141::AID-STAR141>3.0.CO;2-2 Occurrence Handle1:CAS:528:DyaK1cXjsFyitLw%3D

    Article  CAS  Google Scholar 

  6. T Waigh AM Donald F Heidelbach C Riekel MJ Gidley (1999) Biopolymers 49 91 Occurrence Handle10.1002/(SICI)1097-0282(199901)49:1<91::AID-BIP9>3.0.CO;2-9 Occurrence Handle1:CAS:528:DyaK1MXhs1yltw%3D%3D

    Article  CAS  Google Scholar 

  7. PJ Jenkins RE Cameron AM Donald (1993) Starch/Stärke 45 417 Occurrence Handle10.1002/star.19930451202 Occurrence Handle1:CAS:528:DyaK2cXltVWrtg%3D%3D

    Article  CAS  Google Scholar 

  8. PJ Jenkins AM Donald (1995) Int. J. Biol. Macromol. 17 315 Occurrence Handle10.1016/0141-8130(96)81838-1 Occurrence Handle1:CAS:528:DyaK28Xlt1Ciuw%3D%3D

    Article  CAS  Google Scholar 

  9. AM Donald KL Kato PA Perry TA Waigh (2001) Starch/Stärke 53 504 Occurrence Handle10.1002/1521-379X(200110)53:10<504::AID-STAR504>3.0.CO;2-5 Occurrence Handle1:CAS:528:DC%2BD3MXnvV2ltLg%3D

    Article  CAS  Google Scholar 

  10. S. Pikus, J. Jamroz, E. Kobylas, M. Włodarczyk and T. Bogdanowicz, In Conference Proceeding Book, X International Starch Convention, Cracow, Poland, June 11–14, 2002, p. 72.

  11. JS Sanderson RD Daniels AM Donald A Blennow SB Engelsen (2006) Carbohydr. Polym. 64 433 Occurrence Handle10.1016/j.carbpol.2005.12.026 Occurrence Handle1:CAS:528:DC%2BD28XkvF2nu74%3D

    Article  CAS  Google Scholar 

  12. SS Kozlov T Noda E Bertoft VP Yuryev (2006) J. Therm. Anal. Cal. 86 291 Occurrence Handle10.1007/s10973-005-7319-y Occurrence Handle1:CAS:528:DC%2BD28XhtVygs7fL

    Article  CAS  Google Scholar 

  13. VP Yuryev LA Wasserman NR Andreev VB Tolstoguzov et al. (2002) Starch and Starch Containing Origins: Structure, Properties and New Technologies Nova Science Publishers New York 21

    Google Scholar 

  14. VP Yuryev LA Wasserman et al. (2003) Biochemistry and Chemistry: Research and Developments Nova Science Publishers New York 91

    Google Scholar 

  15. II Bocharnikova LA Wasserman AV Krivandin J Fornal W Błaszczak VYa Chernykh A Schiraldi VP Yuryev (2003) J. Therm. Anal. Cal. 74 681 Occurrence Handle10.1023/B:JTAN.0000011001.02981.88 Occurrence Handle1:CAS:528:DC%2BD2cXhtFOrug%3D%3D

    Article  CAS  Google Scholar 

  16. LA Wasserman P Vaccino G Boggini A Schiraldi T Noda AM Kudryavzev VP Yuryev (2006) Pol. J. Food Nutr. Sci. 15 59 Occurrence Handle1:CAS:528:DC%2BD28XltFantLs%3D

    CAS  Google Scholar 

  17. AN Danilenko YeV Shlikova VP Yuryev (1994) Biophysics 39 427

    Google Scholar 

  18. YI Matveev JJG van Soest C Nieman LA Wasserman VA Protserov M Ezernitskaja VP Yuryev (2001) Carbohydr. Polym. 44 151 Occurrence Handle10.1016/S0144-8617(00)00211-3 Occurrence Handle1:CAS:528:DC%2BD3cXosF2ktrw%3D

    Article  CAS  Google Scholar 

  19. TL Wang TYa Bogracheva CL Hedley (1998) J. Exp. Botany 49 481 Occurrence Handle10.1093/jexbot/49.320.481 Occurrence Handle1:CAS:528:DyaK1cXit1ektrs%3D

    Article  CAS  Google Scholar 

  20. M. J. Gidley, Personal communication, (1993), reference quoted from [8].

  21. MT Kalichevsky SG Ring (1987) Carbohydr. Res. 162 323 Occurrence Handle10.1016/0008-6215(87)80229-X Occurrence Handle1:CAS:528:DyaL1cXmtlWg

    Article  CAS  Google Scholar 

  22. NK Genkina VI Kiseleva LA Wasserman VP Yuryev et al. (2004) Starch: Progress in Structural Studies, Modifications and Applications. Polish Society of Food technologists’ Malopolska Branch Cracow 115

    Google Scholar 

  23. VI Kiseleva AV Krivandin J Fornal W Błaszczak T Jelinski VP Yuryev (2005) Carbohydr. Res. 340 75 Occurrence Handle10.1016/j.carres.2004.10.012 Occurrence Handle1:CAS:528:DC%2BD2MXhtVKrsg%3D%3D

    Article  CAS  Google Scholar 

  24. H Miura MHA Wickramasinghe RM Subasinghe E Araki K Komae (2002) Euphytica 123 353 Occurrence Handle10.1023/A:1015042322687 Occurrence Handle1:CAS:528:DC%2BD38Xkt1CktL8%3D

    Article  CAS  Google Scholar 

  25. WHA Mangalika H Miura H Yamauchi T Noda (2003) Cereal Chem. 80 662 Occurrence Handle10.1094/CCHEM.2003.80.6.662 Occurrence Handle1:CAS:528:DC%2BD3sXpt1OqsL0%3D

    Article  CAS  Google Scholar 

  26. NK Genkina LA Wasserman VP Yuryev (2004) Carbohydr. Polym. 56 367 Occurrence Handle10.1016/j.carbpol.2003.12.009 Occurrence Handle1:CAS:528:DC%2BD2cXkvFyktbw%3D

    Article  CAS  Google Scholar 

  27. PL Privalov NN Khechinashvili (1974) J. Mol. Biol. 86 665 Occurrence Handle10.1016/0022-2836(74)90188-0 Occurrence Handle1:CAS:528:DyaE2MXlt12gsA%3D%3D

    Article  CAS  Google Scholar 

  28. C Gernat S Radosta H Anger G Damaschun (1993) Starch/Stärke 45 309 Occurrence Handle10.1002/star.19930450905 Occurrence Handle1:CAS:528:DyaK3sXmsVygtL8%3D

    Article  CAS  Google Scholar 

  29. MA Whittam TR Noel S Ring et al. (1991) Food Polymers, Gels and Colloids Royal Society of Chemistry UK 277 Occurrence Handle10.1533/9781845698331.277

    Book  Google Scholar 

  30. R Hosemann SN Bagchi et al. (1962) Direct Analysis of Diffraction by Matter North-Holland Amsterdam

    Google Scholar 

  31. BK Vainshtein et al. (1966) Diffraction of X-rays by ChainMolecules Elsevier Amsterdam

    Google Scholar 

  32. LA Feigin DI Svergun et al. (1987) Structure Analysis by Small-angle X-ray and Neutron Scattering Plenum Press New York

    Google Scholar 

  33. TA Waight KL Kato AM Donald MG Gidley ChJ Clarke C Riekel (2000) Starch/Stärke 52 450 Occurrence Handle10.1002/1521-379X(200012)52:12<450::AID-STAR450>3.0.CO;2-5

    Article  Google Scholar 

  34. J Jane N Atichokudomchai D-S Such et al. (2004) Starch: Progress in Structural Studies, Modifications and Applications, Polish Society of Food Thechnologists’ Malopolska Branch Cracow 147

    Google Scholar 

  35. E Bertoft D Wiik et al. (2004) Starch: Progress in Structural Studies, Modifications and Applications, Polish Society of Food Thechnologists’ Malopolska Branch Cracow 289

    Google Scholar 

  36. SG Zeeman T Umemoto WL Lue P Au-Yueng C Martin AM Smith J Chen (1998) Plant Cell 10 1699 Occurrence Handle10.1105/tpc.10.10.1699 Occurrence Handle1:CAS:528:DyaK1cXmvF2ksr4%3D

    Article  CAS  Google Scholar 

  37. SG Ball MHBJ van de Wal RGF Visser (1998) Trends Plant Sci. 3 462 Occurrence Handle10.1016/S1360-1385(98)01342-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Yuryev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, S.S., Krivandin, A.V., Shatalova, O.V. et al. Structure of starches extracted from near-isogenic wheat lines. J Therm Anal Calorim 87, 575–584 (2007). https://doi.org/10.1007/s10973-006-7880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7880-z

Keywords

Navigation