Skip to main content
Log in

Some Structural and Thermodynamic Parameters of Maize Starch from Different Maize Genotypes

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract—The morphology, thermodynamic, and physicochemical properties of maize starch isolated from different maize cultivars with different genotypes are analyzed. The considered maize starches represent four groups of starches: wx, ae, su, and mixed genotypes. All the starches are found to contain granules with oval and irregular shapes, their proportion differing for different genotypes. Starches from the su maize genotype have the smallest granules, compared to the wx and ae starches. An increase in the amylose content of wx and ae maize starches considered here results in the accumulation of defect structures in them, which is seen as a lowering of values for the thermodynamic parameters characterizing their melting. The thermodynamic parameters of dissociation of amylose–lipid complexes (i.e., the temperature and enthalpy) for ae and wx maize starches are inferior to those of the su genotype. All of the considered starch genotypes have similar thicknesses of their crystalline lamellae, practically independent of the amylose content. The dynamic viscosity of gels prepared using the starches decreases as their amylose content increases, irrespective of the genotype of plant they were isolated from.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. L. Santana and M. A. A. Meireles, Food Publ. Health 4, 229 (2014).

    Article  Google Scholar 

  2. S. C. Zeeman, J. Kossmann, and A. M. Smith, Ann. Rev. Plant Biol. 61, 209 (2010).

    Article  CAS  Google Scholar 

  3. A. I. Sergeev, N. G. Shilkina, L. A. Wasserman, S. I. Shilov, and H. Staroszczyk, Russ. J. Phys. Chem. B 11, 361 (2017).

    Article  CAS  Google Scholar 

  4. R. M. Aseeva, P. A. Sakharov, and A. M. Sakharov, Russ. J. Phys. Chem. B 3, 844 (2009).

    Article  Google Scholar 

  5. S. Z. Rogovina, K. V. Aleksanyan, L. V. Vladimirov, and A. A. Berlin, Russ. J. Phys. Chem. B 13, 812 (2019).

    Article  CAS  Google Scholar 

  6. L. A. Zhorina, O. P. Kuznetsova, S. Z. Rogovina, L. V. Vladimirov, A. V. Grachev, E. V. Prut, and A. A. Berlin, Russ. J. Phys. Chem. B 12, 1076 (2018).

    Article  CAS  Google Scholar 

  7. C. M. Durrani and A. M. Donald, Polym. Gels Networks 3, 1 (1995).

    Article  CAS  Google Scholar 

  8. J. N. BeMiller and R. L. Whistler, Starch: Chemistry and Technology (Academic, New York, 2009).

    Google Scholar 

  9. C. Christiansen, A. M. Hachem, S. Janecek, A. Vikso-Nielsen, A. Blennow, and B. Svensson, FEBS J. 276, 5006 (2009).

    Article  CAS  Google Scholar 

  10. L. A. Wasserman, A. V. Krivandin, A. G. Filatova, V. G. Vasil’ev, O. O. Kolachevskaya, V. F. Tarasov, I. G. Plashchina, and G. A. Romanov, Russ. J. Phys. Chem. B 14, 525 (2020).

    Article  CAS  Google Scholar 

  11. J. Liu and A. Mushegian, Protein Sci. 12, 1418 (2003).

    Article  CAS  Google Scholar 

  12. M. Leterrier, L. D. Holappa, K. E. Broglie, and D. M. Beckles, BMC Plant Biol. 8, 98 (2008).

    Article  Google Scholar 

  13. M. Shure, S. Wessler, and N. Fedoroff, Cell 35, 225 (1983).

    Article  CAS  Google Scholar 

  14. J. Craig, J. R. Lloyd, K. Tomlinson, et al., Plant Cell 10, 13 (1998).

    Article  Google Scholar 

  15. K. Mizuno, K. Kimura, Y. Arai, et al., J. Biochem. 112, 643 (1992).

    Article  CAS  Google Scholar 

  16. G. P. Schwall, R. Safford, R. J. Westcott, et al., Nat. Biotechnol. 18, 551 (2000).

    Article  CAS  Google Scholar 

  17. A. Nishi, Y. Nakamura, N. Tanaka, and H. Satoh, Plant Physiol. 127, 459 (2001).

    Article  CAS  Google Scholar 

  18. C. Sidebottom, M. Kirkland, B. Strongitharm, and R. Jeffcoat, J. Cereal Sci. 27, 279 (1998).

    Article  CAS  Google Scholar 

  19. C. Takeda, Y. Takeda, and S. Hizukuri, Carbohyd. Res. 246, 273 (1993).

    Article  CAS  Google Scholar 

  20. A. M. Myers, M. K. Morell, M. G. James, and S. G. Ball, Plant Physiol. 122, 989 (2000).

    Article  CAS  Google Scholar 

  21. H. Y. Zhang, S. T. Dong, R. Q. Gao, and Y. Q. Li, J. Plant Physiol. Mol. Biol. 33, 25 (2007).

    Google Scholar 

  22. B. Romeis, Mikroskopische Technik (R. Oldenbourg, München, Baltimore, Wien, 1989).

    Google Scholar 

  23. G. K. Adkins and C. T. Greenwood, Starch-Stärke 7, 213 (1966).

    Article  Google Scholar 

  24. C. J. McGrance, H. J. Cornell, and C. J. Rix, Starch 50, 158 (1998).

    Article  CAS  Google Scholar 

  25. M. Lille and K. Autio, Inn. Food Sci. Emer. Technol. 8, 117 (2007).

    Article  CAS  Google Scholar 

  26. N. R. Andreev, E. N. Kalistratova, L. A. Wasserman, and V. P. Yuryev, Starch 50, 422 (1999).

    Article  Google Scholar 

  27. L. A. Wasserman, A. A. Papakhin, Z. M. Borodina, et al., Carbohydr. Polym. 212, 260 (2019).

    Article  CAS  Google Scholar 

  28. P. L. Privalov and S. A. Potekhin, Methods Enzymol. 131, 4 (1986).

    Article  CAS  Google Scholar 

  29. Y. I. Matveev, J. J. G. van Soest, C. Nieman, L. A. Wasserman, et al., Carbohyd. Polym. 44, 151 (2001).

    Article  CAS  Google Scholar 

  30. A. Imberty, H. Chanzy, S. Perez, A. Buleon, and V. Tran, J. Mol. Biol. 201, 365 (1988).

    Article  CAS  Google Scholar 

  31. N. M. Ptitchkina, O. V. Brukhanova, I. A. Novikova, A. G. Ishin, and E. R. Morris, Food Hydrocol. 8, 383 (1994).

    Article  CAS  Google Scholar 

  32. S. Nielsen, Food Analysis Laboratory Manual (Springer Int., Switzerland, 2017).

    Book  Google Scholar 

  33. C. G. Biliaderis, Food Technol. 46, 98 (1992).

    CAS  Google Scholar 

  34. N. Singh, N. Inouchi, and K. Nishinari, Food Hydrocol. 20, 923 (2006).

    Article  CAS  Google Scholar 

  35. P. J. Jenkins and A. M. Donald, Int. J. Biol. Macromol. 17, 315 (1995).

    Article  CAS  Google Scholar 

  36. V. A. Bershtein and V. M. Egorov, Differential Scanning Calorimetry of Polymers: Physics, Chemistry, Analysis, Technology, Ed. by T. J. Kemp (Ellis Horwood, New York, London etc., 1994).

  37. V. A. Protserov, L. A. Wasserman, R. F. Tester, et al., Carbohyd. Polym. 49, 271 (2002).

    Article  CAS  Google Scholar 

  38. B. Wunderlich, Macromolecular Physics, Vol. 2: Crystal Nucleation, Growth, Annealing (Academic, New York, 1977).

  39. R. F. Tester, Int. J. Biol. Macromol. 21, 37 (1997).

    Article  CAS  Google Scholar 

  40. M. A. Whittam, T. R. Noel, and S. G. Ring, Int. J. Biol. Macromol. 12, 359 (1990).

    Article  CAS  Google Scholar 

  41. A. Aparicio-Saguilan, G. Méndez-Montealvo, J. Solorza-Feria, and L. A. Bello-Pérez, J. Sci. Food Agric. 86, 1078 (2006).

    Article  CAS  Google Scholar 

  42. J. Rosa-Millan, E. Agama-Acevedo, A. R. Jimenez-Aparicio, and L. A. Bello-Pérez, Starch 62, 549 (2010).

    Article  Google Scholar 

Download references

Funding

The study was supported as part of state assignments, topics 0084-2014-0005 (no. 01201253307), 0082-2018-0006 (registration no. AAAA-A-18-118020890097-1), nos. 585-2018-0015, and 0662-2019-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Wasserman.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasserman, L.A., Filatova, A.G., Khatefov, E.B. et al. Some Structural and Thermodynamic Parameters of Maize Starch from Different Maize Genotypes. Russ. J. Phys. Chem. B 15, 161–169 (2021). https://doi.org/10.1134/S1990793121010292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121010292

Keywords:

Navigation