Skip to main content
Log in

Hydration properties of symmetric chain and asymmetric chain sphingomyelin bilayers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydration properties of lipid bilayer systems are compared for symmetric chain sphingomyelin (N-palmitoylsphingomyelin) and asymmetric chain sphingomyelin (N-lignoceroylsphingomyelin). These sphingomyelins were semisynthesized by a deacylation- reacylation process with a natural sphingomyelin used as a starting material. The number of differently bound water molecules was estimated by a deconvolution analysis of the ice-melting curves obtained by a differential scanning calorimetry (DSC) and was used to construct a water distribution diagram for these water molecules. Similarly to a natural sphingomyelin used for comparison, the asymmetric chain sphingomyelin was found to form small size vesicles having an internal cavity and incorporate 15 water molecules per molecule of lipid into its cavity, in contrast with 5 H2O/lipid for freezable interlamellar water observed for large size multilamellar vesicles formed by the symmetric chain sphingomyelin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Simons E Ikonen (1997) Nature 387 569 Occurrence Handle1:CAS:528:DyaK2sXktFCitrk%3D Occurrence Handle10.1038/42408

    Article  CAS  Google Scholar 

  2. A Prinetti V Chigorno G Tettamanti S Sonnino (2000) J. Biol. Chem. 275 11658 Occurrence Handle1:CAS:528:DC%2BD3cXislyqu7Y%3D Occurrence Handle10.1074/jbc.275.16.11658

    Article  CAS  Google Scholar 

  3. U Ortegren M Karlsson N Blazic M Blomqvist FH Nystrom J Gustavsson P Fredman P Stralfors (2004) Eur. J. Biochem. 271 2028 Occurrence Handle10.1111/j.1432-1033.2004.04117.x Occurrence Handle1:CAS:528:DC%2BD2cXksVyktbo%3D

    Article  CAS  Google Scholar 

  4. LK Bar Y Barenholz TE Thompson (1997) Biochemistry 36 2507 Occurrence Handle1:CAS:528:DyaK2sXhvFGgurk%3D Occurrence Handle10.1021/bi9625004

    Article  CAS  Google Scholar 

  5. TN Estep WI Calhoun Y Barenholz GG Shipley TE Thompson (1980) Biochemistry 19 20 Occurrence Handle1:CAS:528:DyaL3cXltlOguw%3D%3D Occurrence Handle10.1021/bi00542a004

    Article  CAS  Google Scholar 

  6. IW Levin TE Thompson Y Barenholz C Huang (1985) Biochemistry 24 6282 Occurrence Handle1:CAS:528:DyaL2MXlslCgtro%3D Occurrence Handle10.1021/bi00343a036

    Article  CAS  Google Scholar 

  7. R Cohen Y Barenholz S Gatt A Dagan (1984) Chem. Physis. Lipids 35 371 Occurrence Handle1:CAS:528:DyaL2MXlvVyjsQ%3D%3D Occurrence Handle10.1016/0009-3084(84)90079-3

    Article  CAS  Google Scholar 

  8. Y Barenholz J Suurkuusk D Mountcastle TE Thompson RL Biltonen (1976) Biochemistry 15 2441 Occurrence Handle1:CAS:528:DyaE28XksVamt7Y%3D Occurrence Handle10.1021/bi00656a030

    Article  CAS  Google Scholar 

  9. WI Calhoun GG Shipley (1979) Biochim. Biophys. Acta 555 436 Occurrence Handle1:CAS:528:DyaE1MXltF2jtLc%3D Occurrence Handle10.1016/0005-2736(79)90397-3

    Article  CAS  Google Scholar 

  10. SH Untracht GG Shipley (1977) J. Biol. Chem. 252 4449 Occurrence Handle1:CAS:528:DyaE2sXkvFOksbo%3D

    CAS  Google Scholar 

  11. PR Maulik D Atkinson GG Shipley (1986) Biophys. J. 50 1071 Occurrence Handle1:CAS:528:DyaL2sXks1OhsA%3D%3D

    CAS  Google Scholar 

  12. GG Shipley LS Avecilla DM Small (1974) J. Lipid Res. 15 124 Occurrence Handle1:CAS:528:DyaE2cXhtFOnsbk%3D

    CAS  Google Scholar 

  13. PK Sripada PR Maulik JA Hamilton GG Shipley (1987) J. Lipid Res. 28 710 Occurrence Handle1:CAS:528:DyaL1cXhs1Oiur0%3D

    CAS  Google Scholar 

  14. PR Maulik PK Sripada GG Shipley (1991) Biochim. Biophys. Acta 1062 211 Occurrence Handle1:CAS:528:DyaK3MXhsF2nsrg%3D Occurrence Handle10.1016/0005-2736(91)90395-O

    Article  CAS  Google Scholar 

  15. PR Maulik GG Shipley (1996) Biochemistry 35 8025 Occurrence Handle1:CAS:528:DyaK28XjtFyrt7s%3D Occurrence Handle10.1021/bi9528356

    Article  CAS  Google Scholar 

  16. PR Maulik GG Shipley (1995) Biophys. J. 69 1909 Occurrence Handle1:CAS:528:DyaK2MXovFynt74%3D

    CAS  Google Scholar 

  17. TJ McIntosh SA Simon D Needham C Huang (1992) Biochemistry 31 2020 Occurrence Handle1:CAS:528:DyaK38XhtVWns7k%3D Occurrence Handle10.1021/bi00122a018

    Article  CAS  Google Scholar 

  18. DA Mannock TJ McIntosh X Jiang DF Covey RN McElhaney (2003) Biophys. J. 84 1038 Occurrence Handle1:CAS:528:DC%2BD3sXovVykug%3D%3D

    CAS  Google Scholar 

  19. Xin-Min Li MM Momsen HL Brockman RE Brown (2003) Biophys. J. 85 3788 Occurrence Handle1:CAS:528:DC%2BD3sXpvVams7c%3D

    CAS  Google Scholar 

  20. Xin-Min Li JM Smaby MM Momsen HL Brockman RE Brown (2000) Biophys. J. 78 1921 Occurrence Handle1:CAS:528:DC%2BD3cXisVWgtLc%3D

    CAS  Google Scholar 

  21. JM Smaby VS Kulkarni M Momsen RE Brown (1996) Biophys. J. 70 868 Occurrence Handle1:CAS:528:DyaK28XlslCqsA%3D%3D Occurrence Handle10.1016/S0006-3495(96)79629-7

    Article  CAS  Google Scholar 

  22. D Marsh et al. (1990) CRC Handbook of Lipid Bilayers CRC Press Boca Raton FL 68

    Google Scholar 

  23. R Koynova M Caffrey (1995) Biochim. Biophys. Acta 1255 213

    Google Scholar 

  24. JL Kerwin AR Tuininga LH Ericsson (1994) J. Lipid Res. 35 1102 Occurrence Handle1:CAS:528:DyaK2cXkslOls74%3D

    CAS  Google Scholar 

  25. W Pruzanski E Stefanski FC de Beer MC de Beer A Ravandi A Kuksis (2000) J. Lipid Res. 41 1035 Occurrence Handle1:CAS:528:DC%2BD3cXltF2qtr4%3D

    CAS  Google Scholar 

  26. AA Karlsson P Michelsen G Odham (1998) J. Mass Spectrom. 33 1192 Occurrence Handle1:CAS:528:DyaK1MXhsl2ktQ%3D%3D Occurrence Handle10.1002/(SICI)1096-9888(199812)33:12<1192::AID-JMS735>3.0.CO;2-J

    Article  CAS  Google Scholar 

  27. Y Kawasaki A Kuboki S Ohira M Kodama (2005) Thermochim. Acta 431 188 Occurrence Handle1:CAS:528:DC%2BD2MXltVakur4%3D Occurrence Handle10.1016/j.tca.2005.02.025

    Article  CAS  Google Scholar 

  28. AD Bangham MW Hill NGA Miller (1974) Methods Membr. Biol. 1 1 Occurrence Handle1:CAS:528:DyaE2MXhtlWhsA%3D%3D

    CAS  Google Scholar 

  29. M Kodama H Aoki H Takahashi I Hatta (1997) Biochem. Biophys. Acta 1329 61 Occurrence Handle1:CAS:528:DyaK2sXlslemsr8%3D

    CAS  Google Scholar 

  30. M Kodama Y Kawasaki H Aoki Y Furukawa (2004) Biochim. Biophys. Acta 1667 56 Occurrence Handle1:CAS:528:DC%2BD2cXpsFWitLw%3D Occurrence Handle10.1016/j.bbamem.2004.08.015

    Article  CAS  Google Scholar 

  31. M Kodama H Aoki et al. (2000) Water behavior in phospholipid bilayer systems, in: Surfactant Science Series 93, Thermal Behavior of Dispersed Systems Marcel Dekker New York 247

    Google Scholar 

  32. PG Barton FD Gunstone (1975) J. Biol. Chem. 250 4470 Occurrence Handle1:CAS:528:DyaE2MXkslequ78%3D

    CAS  Google Scholar 

  33. JT Mason Ching-hsien Huang RL Biltonen (1981) Biochemistry 20 6086 Occurrence Handle1:CAS:528:DyaL3MXlsVGltLY%3D Occurrence Handle10.1021/bi00524a026

    Article  CAS  Google Scholar 

  34. RNAH Lewis DA Mannock RN McElhaney et al. (1997) Membrane Lipid Molecular Structure and Polymorphism, in: Current Topics in Membranes, Vol. 44, Lipid Polymorphism and Membrane Properties Academic Press Amsterdam 25

    Google Scholar 

  35. C Hang JT Mason (1978) Proc. Natl. Acad. Sci., USA 75 308 Occurrence Handle10.1073/pnas.75.1.308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodama M..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, Y., Kuboki, A., Ohira, S. et al. Hydration properties of symmetric chain and asymmetric chain sphingomyelin bilayers. J Therm Anal Calorim 85, 609–616 (2006). https://doi.org/10.1007/s10973-006-7659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7659-2

Keywords

Navigation